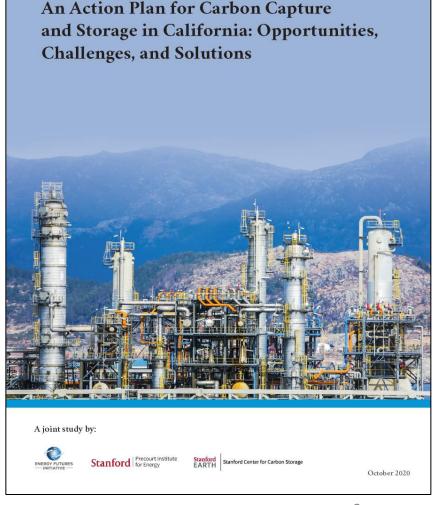
An Action Plan for Carbon Capture and Storage in California: Opportunities, Challenges, and Solutions

A Presentation on the Study Results by the Project Executives Professor Sally Benson, Stanford University Melanie Kenderdine, Energy Futures Initiative October 22, 2020

SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES Carbon Storage

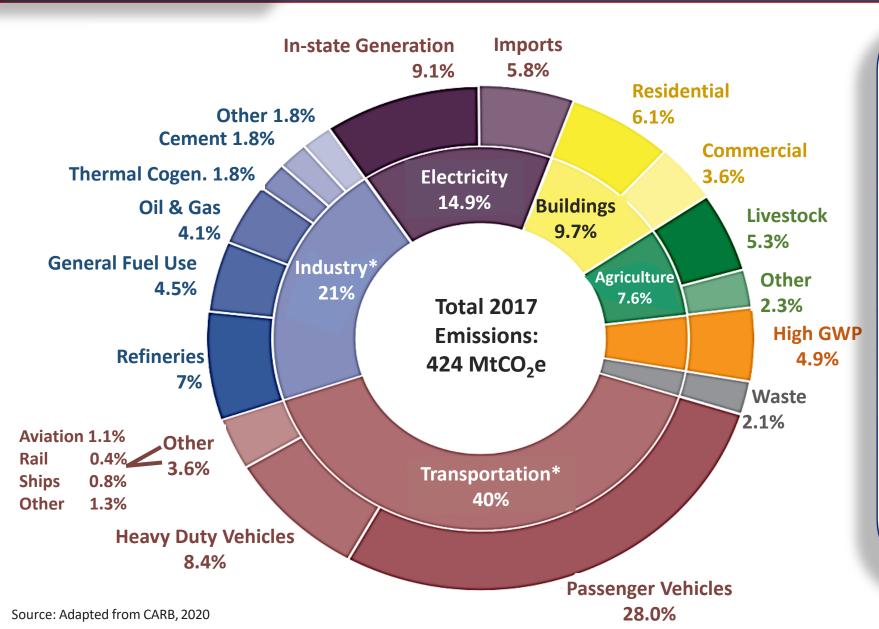
Stanford ENERGY Precourt Institute for Energy

Study Approach and Framing


Analysis focused on five key areas

- Meeting California's Decarbonization Targets: The Critical Role of CCS in Carbon Dioxide Removal
- The Status of CCS in California
- The CCS Opportunity in California
- The Challenges for CCS Project Development in California
- A Policy Action Plan for Maximizing the Value of CCS in California

Bottom line up front


An Action Plan for Policymakers was developed to fulfill California's CCS potential, supporting the report's high-level goals of:

- Maximizing the value of CCS for meeting the state's economywide decarbonization goals affordably and equitably
- ✓ Motivating the private sector to decarbonize
- Enabling economic and reliability benefits from existing industries and power generation, and --
- ✓ Unlocking new clean energy industries and jobs

What CCS Can Do for California: Emissions Reductions

Emissions Reduction Potential from CCS in California

- Approx. 15% of state's total CO₂ emissions can be captured and stored with CCS
- This is 65% greater than emissions from in-state power generation in 2017
- 44% greater than emissions from the entire buildings sector
- 84% greater than all emissions from the agriculture sector
- 66% greater than emissions from all heavy-duty vehicles

Stanford SCHOOL OF EARTH, ENERGY SCHOOL OF EARTH, ENERGY Stanford Center for Carbon Storage

Stanford ENERGY Precourt Institute for Energy

What CCS Can Do For California: Meet Climate Targets While Supporting Economic Base/Jobs

Maximize options for meeting 2030 and 2045 GHG targets to reduce associated costs, improve the likelihood of achieving the targets, and foster innovation.

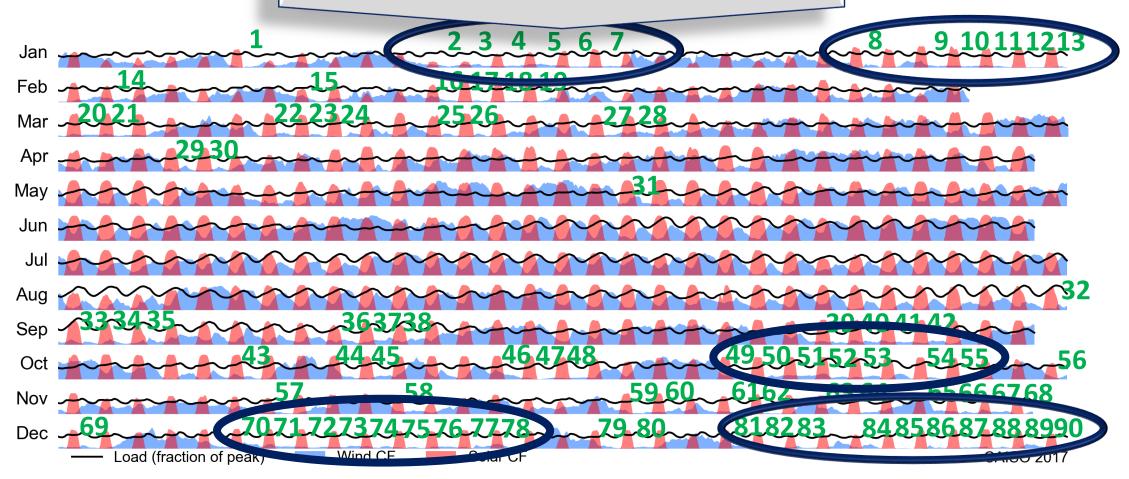
2020 Goal: Equal to 1990 Emissions Level of 427 MtCO₂e 2030 Goal: 40% Reduction from 1990 Emissions Level, 256.2 MtCO₂e 2045 Goal: Carbon Neutrality and Net-negative Emissions Thereafter

Motivate the private sector to deeply decarbonize its operations.

	California			
	Cement	Cement & Related		
<u># Employees</u>	1,449	16,774		
<u>Payroll (\$)</u>	101 million	924 million		
Contribution to State Taxes Revenues (\$)	35.6 million	412 million		
Economic Contribution (\$)	2.4 billion	12.1 billion		

California

- ✓ Industry 21% of total emissions
- Largest manufacturing state in the country
 - Few technology options for decarbonization


"California's manufacturing accounted for roughly \$315 billion in economic output in 2018 -- 11 percent of gross state product-- with more than 35,000 firms employing 1.3 million employees... The use of CCS could enable difficult-to-decarbonize industries to stay in business and continue making large contributions to California's economy while dramatically reducing their GHG emissions." -National Association of Manufacturers, "2019 California Manufacturing Facts."

Source: Adapted from Portland Cement Association, 2017

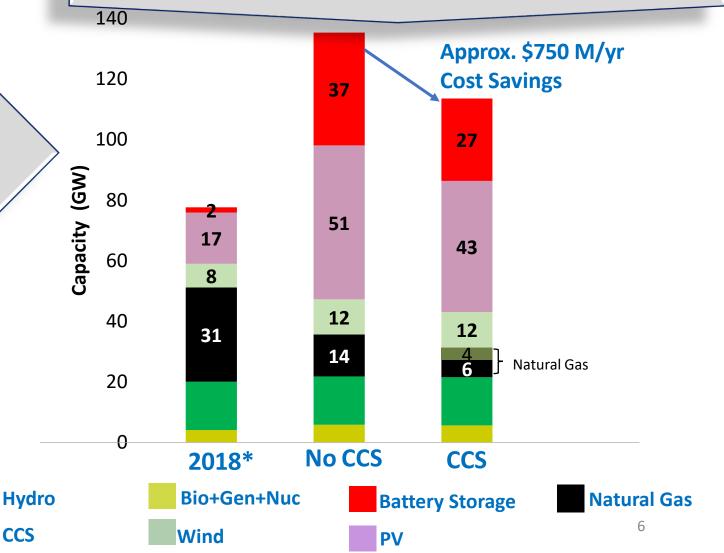
What CCS Can Do For California: Support for Grid Reliability, Variable Renewable and Climate Targets

Enable continued reliability benefits from clean firm power generation ...

Source: Energy Futures Initiative, 2019. Compiled using data from CAISO, 2017

Hourly trends in solar and wind capacity factors in CA for 2017 aligned to normalized variation in hourly load relative to peak daily load

5



What CCS Can Do for California: Enable <u>Affordable</u> Clean Firm Power and Renewable

System capacity in 2018 and 2030 for a scenario with and without NGCC CCS. The scenario with CCS shows approx. 4 GW of CCS in the system, and overall lower capacity needs than a system without CCS. The annual generation system cost for a scenario with CCS is approximately \$750 million/year lower as well.

Note: Capacities include in-state generation capacity and out-of-state generation capacity dedicated to California. *2018 Baseline is California's generating capacity based on 2018 eGRID database including planned natural gas and nuclear retirements, as well as planned capacity additions for PV and wind.

Note: figure updated 10/25/20 to reflect final results Source: Energy Futures Initiative and Stanford University, 2020. ...and enable continued reliability benefits from clean firm power generation <u>at lower cost</u>

What CCS Can Do for California: Enabling New

Clean Energy Industries and Jobs

... Unlock new, potentially multi-billion-dollar clean energy industries, creating new jobs in the process.

Petroleum Retail Gas kg H_a/dav Refining Electrolysis **Natural Gas** 10 2 Steam Methane **Reformers with CCS** 1.5 million kg H_2/day F Combined **Cycle Power** H₂ Storage Plant **Onshore Sequestration**

Support Development of A Hydrogen **Economy**

"The oil and gas industry...[w]as a major employer and leading economic drive in California responsible for 368,100 jobs in 2015, or 1.6 percent of California's employment, with almost \$66 billion in total valueadded, contributing 2.7 percent of California's state product." -LA County Economic Development Corporation

• Half of ports' drayage fleet (5,000 trucks)

- Entire ports' electricity requirement (50MW/h)
- o 80% of SCG's petroleum refiner demand
- 10% of SCG's residential gas demand (as blend)
- \circ CO₂ sequestration equivalent to half an average coal plant emissions

Source: Energy **Futures** Initiative and Stanford University, 2020.

7

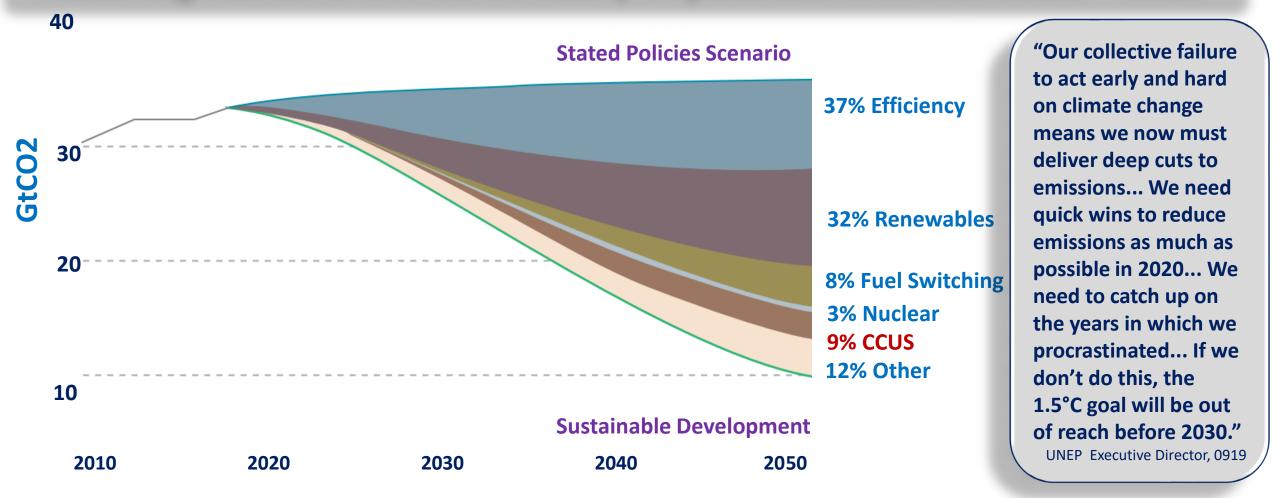
Enable Carbon Dioxide Removal/Direct Air Capture Industry

Similarities with CCS

- Improved process energy efficiency
- Lifecycle analyses
- Low-carbon capture requirements/ systems
- Low-carbon heat
- Geologic storage

- Material manufacturing & scale-up • Novel: catalysts;
- membranes; solvents; sorbents
- Simulation
- Sensors and controls

Translate Oil and Gas Skillsets to CCS Industry Job


Opportunities for Using Existing Carbon Infrastructure for Decarbonization

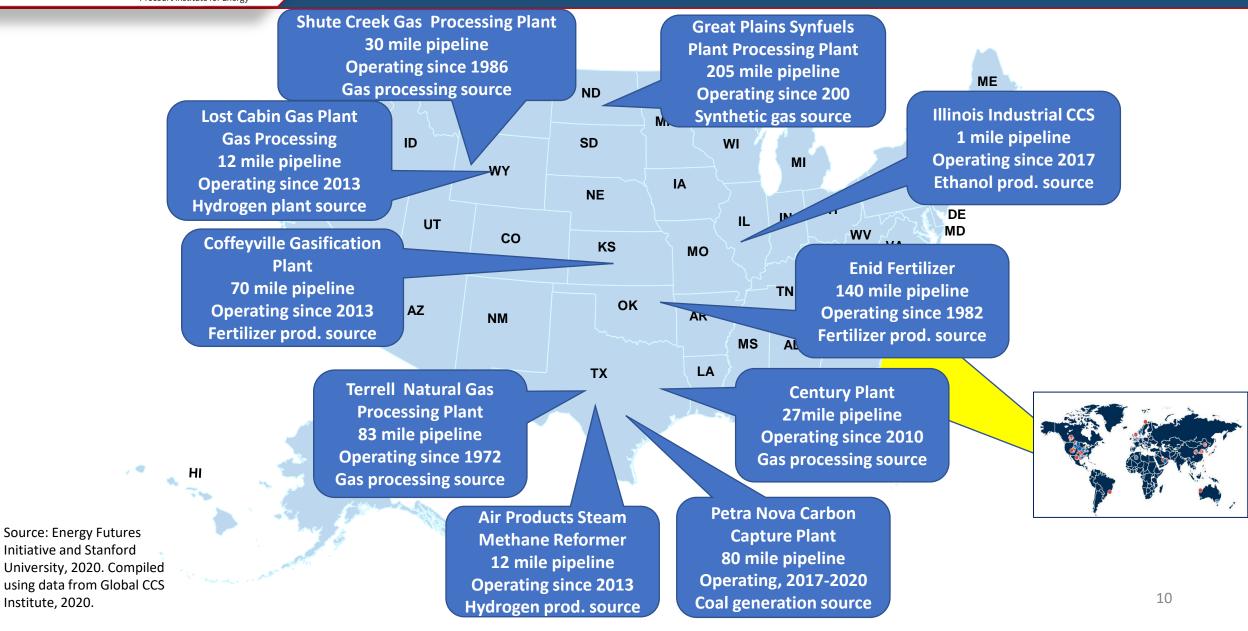
	Oil Refineries & Gas Processing	Natural Gas Generation	Oil & Gas Pipelines	Waterborne Transportation & Ports	Storage
Negative Emissions Technologies /Carbon Capture, Utilization, and Storage (CCUS)	 Applying industry expertise to CCUS technologies for direct-air capture (DAC) and bioenergy with carbon capture and storage (BECCS) 	 Applying industry expertise: CCUS technologies for DAC and BECCS 	 Using compression technologies similar, to those in NG infra- structure for CO₂ Rail and roadway = existing infrastructure Leveraging pipeline rights-of-way 	 Using industry expertise in lique- faction and trans- port of LPG/LNG for liquid CO₂ Marine vessels for CO₂ using the same technology as existing LPG or LNG tankers Port infrastructure for loading Offshore facilities for subsea injection 	 Using saline formations, depleted O&G reservoirs, un- mineable coal seams, basalt formations Using industry expertise in large-scale CO₂ separ- and sequest Applying teo drilling and inje- subsurface characteriza and site monitoring, same as in the O&G sector Leveraging similarities with NG storage, acid gas disposal and CO₂-EOR

CCS: An Important Technology for Meeting Global Sustainable Development Targets

"Reaching net zero will be virtually impossible without CCUS" IEA, 02/20

Global CCS Projects, 2019

Large scale CCS facilities in operation or under construction


Large scale CCS facilities in advanced development

Large scale CCS facilities completed

- Pilot and demo in operation or under construction
- Pilot & demo scale facility in advanced dev.
- Pilot & demo scale facility completed
- Test center

US CO₂ Project, Emissions Sources, Age

CCS in CA: Agencies of Jurisdiction, Projects

Seeking LCFS Incentives

Application Process for Projects Seeking LCFS Credits, and Project Dependent Requirements

Agencies of Jurisdiction	Electricity	Industry	Agencies of Jurisdiction
CEC		Authority to Construct and Permit to Operate	
EPA Region 9	Class VI permit		EPA Region 9
CEC, CALGEM	or Class II permit		CALGEM
CEC			State/Local Lead Agency
CEC, Federal Lead Agency		CEQA Process or Joint CEQA/NEPA Process	
CARB	LCFS Permanen & Credit Genera		CARB

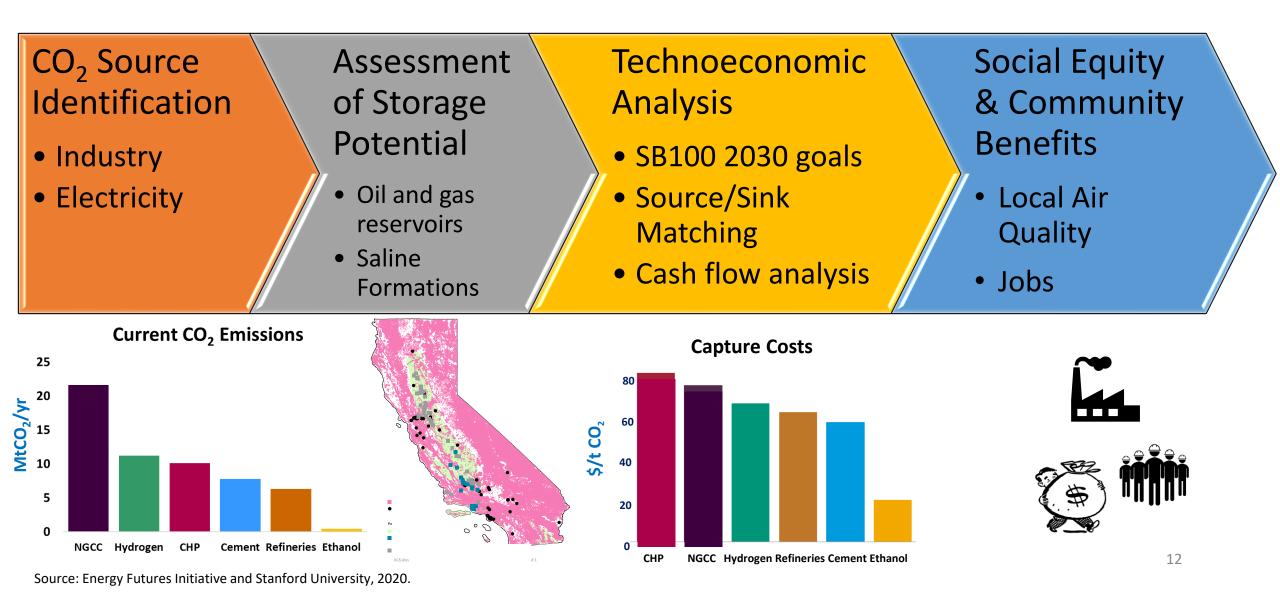
Project Dependent Permitting Requirements

Coastal	Federal land	Federal	Attainment	CA Lake,	Municipal	Endangered
State	Right of Way	Waters	Area	Stream, River	Zones	Species
Development		404, NPDES	New Source	Alteration	Conditional	State, Fed
Permits		Permits	Review: PSD	Agreement	Use Permits	Permits

Source: Energy Futures Initiative and Stanford University, 2020.

Four In-Development CCS Projects Pursuing LCFS, as of October 2020

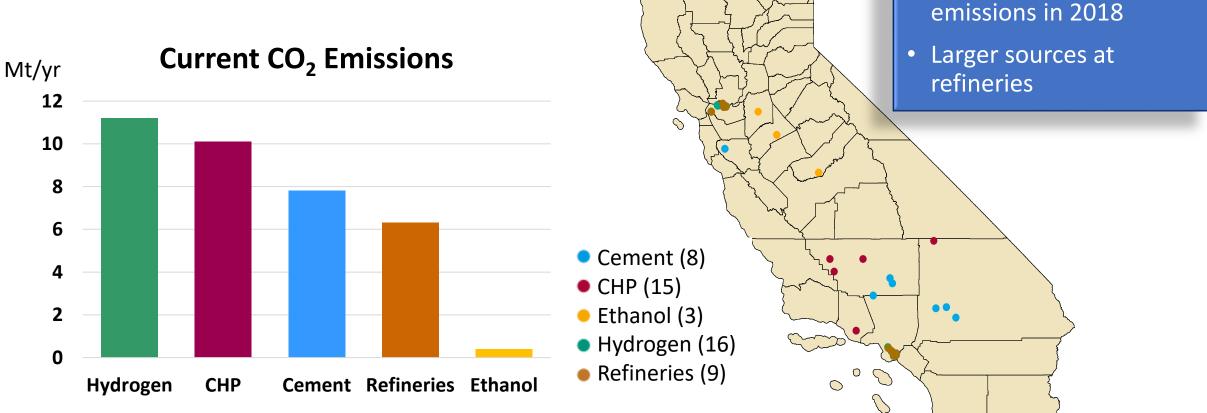
Clean Energy System. Existing, mothballed biomass facility in California with new technologies to produce hydrogen through gasification of biomass and capture of CO_2 . Onsite geologic storage into saline reservoir via short pipeline.


California Resources Corporation. Existing and operating NGCC used for combined heat and power (CHP) located within an oilfield in California paired with post-combustion carbon capture facility. Captured CO_2 is transported onsite via pipeline to injection well(s) for EOR.

Interseqt LLC (White Energy and Oxy Low Carbon

Ventures). Two existing ethanol plants in Texas which sell bioethanol into California for fuel blending, each paired with carbon capture equipment. Captured CO_2 will be injected for EOR.

1PointFive (Oxy Low Carbon Ventures and Rusheen Capital Management) and Carbon Engineering. DAC facility located in Texas. Captured CO₂ will be injected for EOR.



Opportunities for CCS in the Industrial Sector

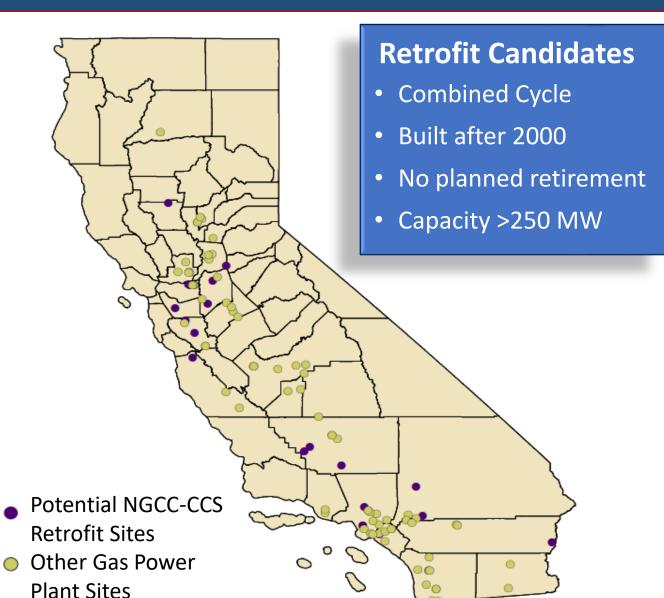
Industry Sources

- 35.8 MtCO₂/yr current emissions
- 31.8 MtCO₂/yr capturable emissions
- 51 Facilities

Industrial Candidates

Operating and reporting

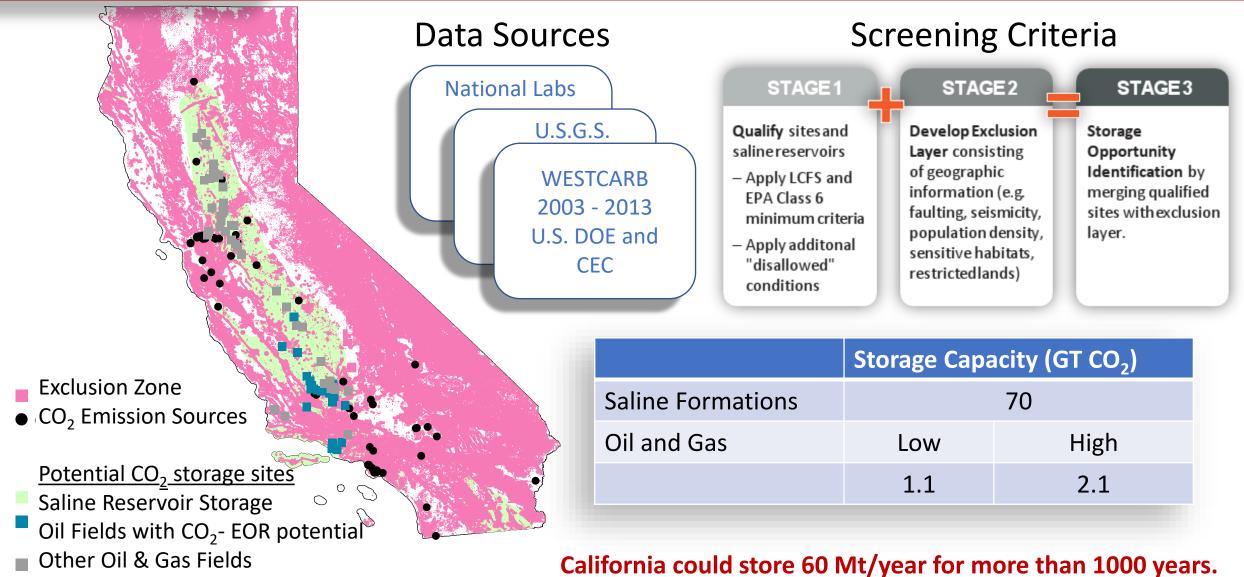
• >100,000 tCO₂/yr


•

Opportunities for CCS Electricity Sector in California

- 25 natural gas combined cycle (NGCC) power plants meet CCS retrofit criteria
- 14 GW total capacity
- 21.6 MtCO₂/yr current emissions
- 27.5 capturable emissions MtCO₂/yr*

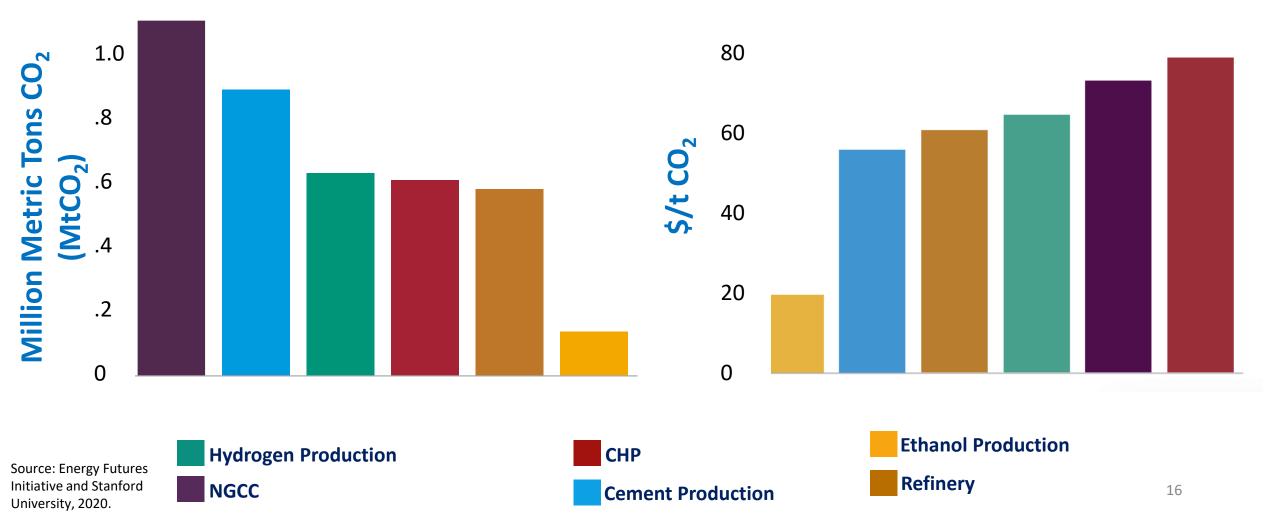
* Capacity factor to increase to 60%



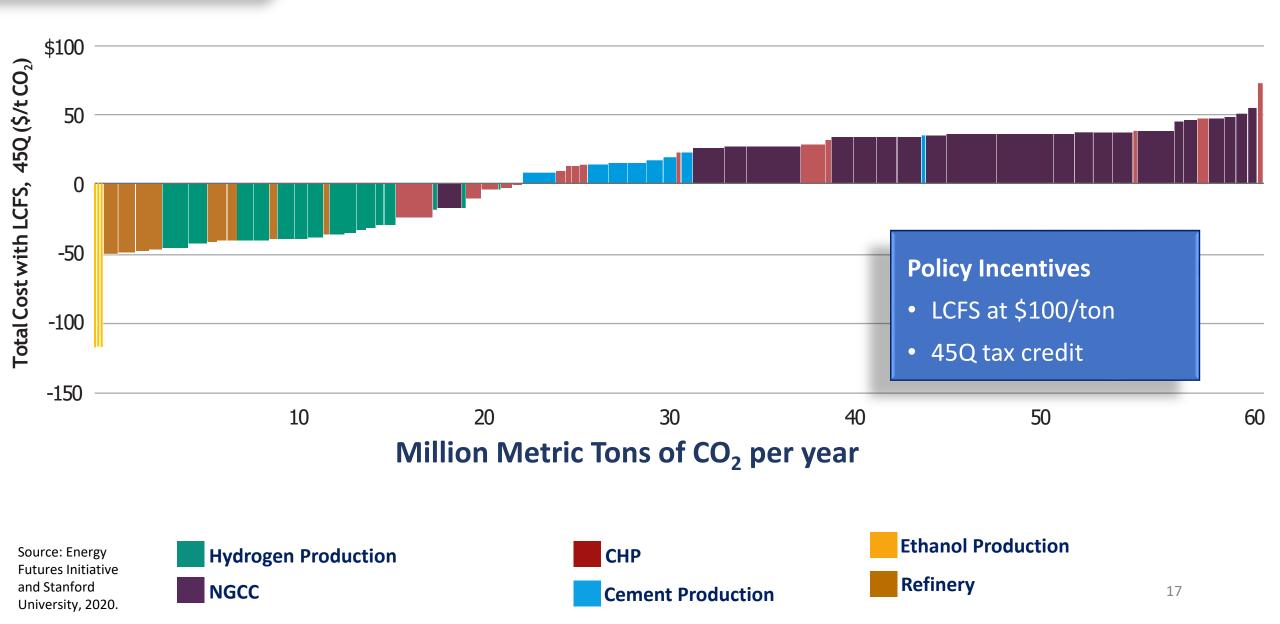
Source: Energy Futures Initiative and Stanford University, 2020.

California Has Abundant and High-Quality CO₂ Storage Resources

15



Comparison of Emissions and Capture Costs by Subsector


Average Emissions for Different CO₂ Capture Sources

Average Cost for Capture for Different CO₂ Sources

With Current Incentives About 20 MtCO₂/yr Could Be Captured Cost Effectively

Infrastructure Buildout for 60 MtCO₂/yr CCS

• Emissions Sources	Co-located capture and storage	 3 ethanol plants, 6 NGCC, 6 CHPs and 1 cement plant
 Notional CO2 Pipeline Potential Geologic Storage 	1. Northern California Gathering System and Storage Hub	 8 hydrogen 4 refineries, 5 CHPs, and 3 NGCC
	2. Southern California Gathering System and Storage Hub	 8 hydrogen, 5 refineries, 4 CHPs, 1 cement, and 5 NGCC
	3. Desert and Salton Sea Gathering Systems	• 5 cement, 1 CHP, 6 NGCC
	4. Central California and S. Bay Gathering System	• 1 cement, 5 NGCC
Source: Energy Eutures Initiative and Stanford University 2020		18

Source: Energy Futures Initiative and Stanford University, 2020.

Social Equity and Community Benefits

Local Air Quality Improvements

- Some industrial facilities with high CO₂ emissions also emit high levels of criteria air pollutants such as sulfur dioxide (SO₂), nitrous dioxide (NO₂), and particulates
- Post-combustion carbon capture requires reduction of these other pollutants creating local air quality benefits

Local Economic Activity

- CCS projects can **stimulate local economic activity**, including new construction, operations, and maintenance jobs
- Multiplier effects across the supply chain can drive additional economic benefits

Job Creation and Preservation

- The economic benefits associated with job training could provide new employment opportunities in the low carbon economy
- CCS activities support employment for skill sets which may otherwise become obsolete in a clean energy transition

HOOL OF EARTH, ENERGY Stanford Center VIRONMENTAL SCIENCES Carbon Storage

Stanford

Stanford ENERGY Precourt Institute for Energ

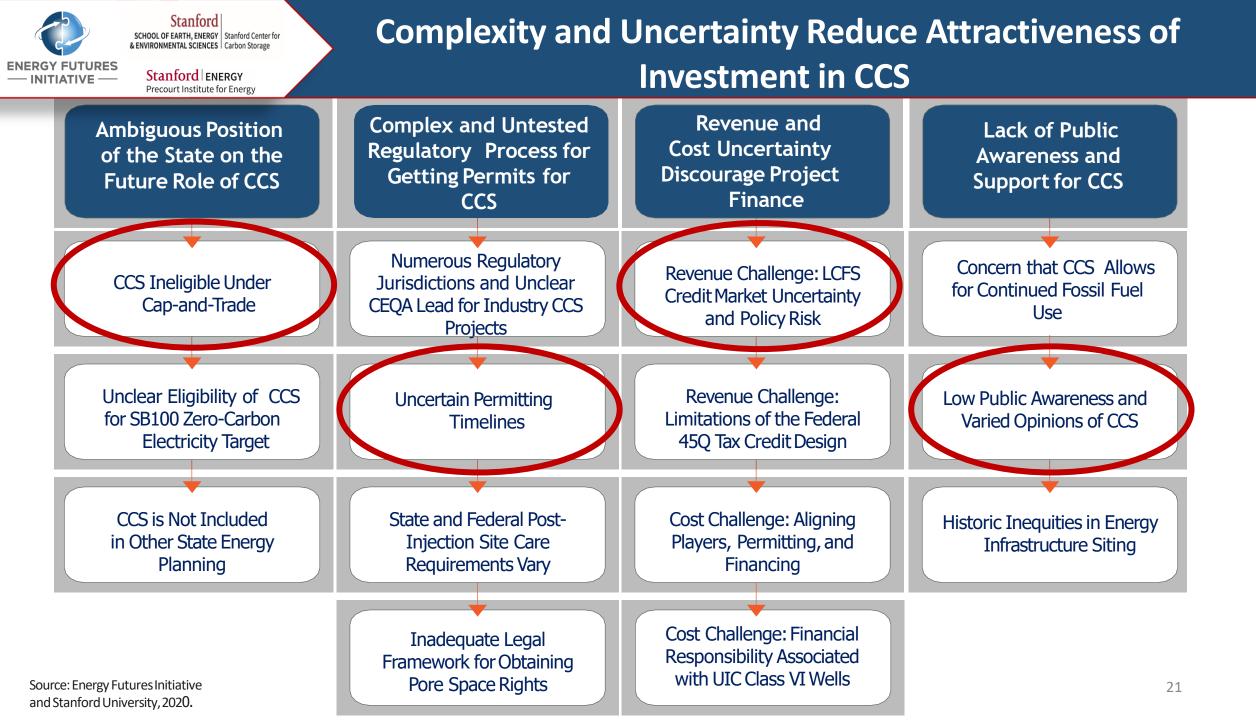
Engaging Stakeholders to Identify Challenges for CCS

Industry/Affiliation	#
Cement	3
Chemicals	3
Diversified Energy	15
Environmental Advocacy	5
Infrastructure	8
Investment	3
Labor Unions	2
Power	6
Private Equity	2
Public Sector	3
Refinery	5
Reinsurance	2
Utility	2
Total*	59

* Indicates number of interviews; most interviews included multiple interviewees.

- Technology developers
- Industry
- Power producers
- Project financers
- NGOs

- Ambiguity
- Regulatory complexity
- Financial uncertainty
- Education and public support


Stakeholder interviews

Assessment of challenges

Analysis identified key challenges for CCS project development in California through interviews with project developers, financiers, and industry stakeholders, as well as archival research and analysis of California's policy landscape.

Near-Term Actions for Meeting California's Climate Targets with CCS

Issue Policy Guidance to Clarify CCS Eligibility As new energy technologies emerge, questions often emerge of their compatibility with existing policies and regulations.

- California could incorporate CCS into its biennial integrated resource plan and long-term procurement planning process.
- California could make CCS an eligible resource under the SB100 goal of 100 percent of retail electricity sales from renewable and zero-carbon resources by 2045.

Develop State Supported CCS Demos with Industry Demonstration projects could provide valuable insights into the technical and regulatory challenges of a CCS project.

- California should consider supporting a large CCS demonstration project to help overcome high at-risk costs in the project's early stages; untested permitting processes throughout the value chain; and public acceptance of CCS.
- California could prioritize projects that have demonstratable local air quality benefits and local job opportunities in line with its climate and equity goals.

Source: Energy Futures Initiative and Stanford University, 2020. Affirm State Support for CCS in Meeting Emissions Targets Improve and Coordinate CCS Permitting Processes

Issue Policy Guidance to Clarify CCS Eligibility Issue Guidance for CO₂ Storage Develop State Supported CCS Demos with Industry

NEAR-TERM ACTIONS FOR MEETING CALIFORNIA CLIMATE TARGETS

Incorporate CCS Protocol into Cap-and-Trade Program

CCS is not an eligible pathway under California's Cap-and-Trade program. There is no incentive for covered entities to deploy CCS though it could contribute large emission reductions.

• CARB could adopt the CCS Protocol from the LCFS program into the existing Cap-and-Trade Program to provide additional financial incentive for projects to pursue CCS. This is especially important for NGCCs and cement, which are not eligible for LCFS credits but are covered under Cap-and-Trade.

Source: Energy Futures Initiative and Stanford University, 2020. Incorporate CCS Protocol in Capand-Trade Enhance Support Mechanisms for CCS Establish Public-Private Partnership to Create LA & Bay Area Hubs Set Statewide Carbon Removal Targets

KEY ENABLERS FOR CARBON NEUTRALITY

Opportunities to Lead Global Action on Climate Change

Support Options to Ensure Adequate Clean Firm Power

Studies show clean firm resources can have significant benefits to a deeply decarbonized electric grid. Clean firm resources can reduce overall system costs, complement renewable energy resources, and enable overall operational flexibility. These benefits will be even more critical as California faces increasing threats from climate change.

California should support policies that:

- provide a more precise understanding of how much firm power is needed for a grid that is decarbonizing;
- inform grid reliability planning processes;
- identify key technologies for providing clean firm power; and
- identify policy options for the scaleup and deployment of those technologies that are essential for ensuring reliable, affordable, and clean power.

Thank You for Joining Us!

- California has some of the most ambitious decarbonization targets in the country. Additional actions to accelerate
 meeting these targets—by a coalition of Californians—are needed to ensure that the state rapidly and equitably
 transitions to a carbon neutral economy.
- Strong foundations for CCS in California include: the urgent need for rapid emission reductions; policy support from LCFS CCS Protocol; the commercial readiness of CCS; commitment to equitable and clean transition, among others.
- Opportunities to leverage CCS to rapidly decarbonize and create new clean industries and jobs:
 - sizeable geologic storage resources
 - the need for clean firm electricity generation as intermittent renewable generation grows;
 - the need for clean transportation fuels, such as hydrogen;
 - and the state's experience advancing strong climate policies and innovative industries.
- An Action Plan for Policymakers was developed to fulfill California's CCS potential and to:
 - ✓ Maximize the value of CCS for meeting the state's economywide decarbonization goals
 - ✓ Motivate the private sector to decarbonize
 - Enable economic and reliability benefits from existing industries and power generation, and
 - Unlock new clean energy industries and jobs

SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES Stanford Center for Carbon Storage

Stanford ENERGY Precourt Institute for Energy

Thank You to Our Project Team

PROJECT EXECUTIVES

SALLY M. BENSON *Stanford University*

MELANIE KENDERDINE Energy Futures Initiative

PROJECT MANAGERS

ANNE CANAVATI Energy Futures Initiative

SARAH D. SALTZER *Stanford University*

CONTRIBUTING AUTHORS

EJEONG BAIK Stanford University

ALEX BRECKEL Energy Futures Initiative

JEFF BROWN Brown Brothers Energy & Environment, LLC

VICTOR CARY Energy Futures Initiative

STEPHEN COMELLO Stanford University

ALEX KIZER Energy Futures Initiative

ALEX MARANVILLE Energy Futures Initiative

ADDITIONAL CONTRIBUTORS

ERICK ARAUJO Stanford University

JUSTIN BRACCI Stanford University

TIM BUSHMAN Energy Futures Initiative

MAX DRICKEY Energy Futures Initiative

DAVID ELLIS Energy Futures Initiative

CATHERINE HAY *Stanford University*

JOE HEZIR Energy Futures Initiative

TAE WOOK KIM Stanford University **ANTHONY R. KOVSCEK** *Stanford University*

TOM MILLER Stanford University

JEANETTE PABLO Energy Futures Initiative

RICHARD RANDALL *Energy Futures Initiative*

EMILY TUCKER Energy Futures Initiative

NATALIE VOLK Energy Futures Initiative

SEAN YAW Montana State University

MARK ZOBACK7 Stanford University

Thank You to Our Advisory Board

EFI and Stanford wish to thank the following individuals for contributing subject-matter expertise during the development of this study. Their participation does not imply endorsement of the analysis approach or conclusions.

BOARD CO-CHAIRS

ERNEST MONIZ

Energy Futures Initiative

FRANKLIN ORR Stanford University

BOARD MEMBERS

DEEPIKA NAGABHUSHAN *Clean Air Task Force*

KATIE PANCZAK DTE Energy

GEORGE PERIDAS *Lawrence Livermore National Lab*

CARLA PETERMAN Southern California Edison

DAN REICHER Stanford University Law School MAXINE SAVITZ National Academy of Engineering

JOHNNY SIMPSON IBEW International 9th District

ERIC TRUSIEWICZ Breakthrough Energy Ventures & Stanford University

ROGER ULLMAN *Linden Trust for Conservation*

MATTHEW BARMACK

Calpine

BRIAN CHASE Chevron & OGCI

JAMES HARRISON Utility Workers Union of America

DAVID HAWKINS Natural Resources Defense Council

JANE LONG Environmental Defense Fund

Thank You to Our Sponsors

EFI and Stanford would like to thank the following organizations for sponsoring this report.

WILLIAM AND FLORA HEWLETT FOUNDATION

LINDEN TRUST FOR CONSERVATION

CASE FOUNDATION

STEPHENSON FOUNDATION

OIL AND GAS CLIMATE INITIATIVE (OGCI)

CALPINE CORPORATION

UNITED MINE WORKERS OF AMERICA

CALIFORNIA STATE ASSOCIATION OF ELECTRICAL WORKERS

STATE BUILDING & CONSTRUCTION TRADES COUNCIL OF CALIFORNIA

INTERNATIONAL BROTHERHOOD OF BOILERMAKERS