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Executive Summary 
Bioenergy with carbon capture and storage (BECCS) can provide energy and carbon 
management services. Realizing these benefits at climate-relevant scales depends on 
sourcing large volumes of low-cost and environmentally sustainable biomass feedstocks. 
Economical and environmentally sustainable production at large scales requires feedstock 
sources with low input costs, minimal interference to existing agricultural production, and 
synergies with agro-ecosystem carbon storage.  
 
This analysis finds a substantial renewable biomass resource in the United States to support 
BECCS as a negative-emissions strategy. Mobilization of these biomass resources for 
BECCS and other sectors can reduce risks associated with increasing atmospheric CO2 
concentrations and provide positive socioeconomic and sustainability benefits. We estimate 
that the current scale of the US bioenergy sector—approximately 360 million dry metric 
tonnes (MMT) of plant-derived feedstocks produced per year—can be doubled with existing 
resources (wastes, residues, and forest management) in the near term, and can be more 
than tripled with investments to increase production and develop efficient supply chains. 
This analysis finds that this level of additional biomass production and use can be realized 
while simultaneously meeting projected demands for food, feed, fiber, and exports, and 
while providing net benefits in terms of environmental services.  
 
This report explores the potential for expanded BECCS feedstock production in the United 
States through the following components: 

1. A review of detailed economic potentials of agricultural and forestry residues, 

dedicated energy crop production on cropland and pasture, and various waste 

streams under rigorous sustainability criteriaa 

 
a See DOE (2016) glossary and text for feedstock definitions and criteria. 
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2. Consideration of geospatial relationships among potential biomass resources and 

suitable CO2 sequestration basins, which influence the economic feasibility for using 

those feedstocks for BECCS  

3. A literature review of the estimated technical potential for additional sources of 

ligno-cellulosic biomass—selected for their sustainability attributes—to support 

BECCS and the broader bioeconomy  

4. Discussion of challenges associated with biomass feedstock production scale-up, 

and sustainability best practices 

The 2016 Billion-Ton Report (BT16), supported by the US Department of Energy, provides a 
detailed assessment of current biomass use in the bioeconomy, and the potential for future 
scale-up of select categories of sustainable ligno-cellulosic biomass production.1 Potential 
biomass supplies based on documented technical and economic assessments are 
estimated by resource type and sum to approximately 750 MMT/year by 2040 in a base 
case, and more than 1,000 MMT/year under market incentives to develop efficient supply 
chains and improve yields (Figure ES-1). The BT16 estimates supply potentials that are 
geospatially explicit, account for other (e.g., food, fiber, exports) market demands, and are 
supported by detailed descriptions of sustainability constraints and underlying assumptions. 
The full report and all underlying data are available online.b  
 
The biomass resource described in the BT16 can support the growth of a future US BECCS 
industry. Based on known analyses to date, approximately one-third of the BT16 biomass 
resource is co-located in geological basins suitable for CO2 storage, and another third could 
be accessed for BECCS via existing transport infrastructure or piping the resulting CO2 to 
the appropriate location. Initial estimates of BECCS deployment utilizing this biomass 
resource suggest that up to 737 MMT of CO2 could potentially be sequestered annually 
at scenario-average costs ranging from $42 to $92/Mg CO2. 
 
 
 
 
 

 
b https://www.energy.gov/eere/bioenergy/2016-billion-ton-report 
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Figure ES-1. Biomass supply potentials in the contiguous United States from specified 
sources, present and in 2040. 

 
The black outline illustrates biomass economic potential quantified in the BT16; bars above the black outline 
represent the technical potential of other biomass sources assessed in this study. The base case represents a 
conservative estimate of well-documented resources that could be mobilized in near term; the incentivized scenario 
reflects more intensive production via investments in advanced production and logistic systems; the expanded 
scenario includes additional supplies that merit more study, such as genetic improvements to enable economic 
biomass production on a small share of US rangeland and other marginal lands. All potentials represent biomass 
supplies that could be developed in compliance with sustainability criteria and while contributing to multiple 
sustainable development goals. 

 

Other potential biomass sources merit study beyond those considered in the BT16, including 
from cover cropping, energy crop cultivation on reclaimed mining land, and wildfire fuel 
reduction efforts. Several of these other emergent feedstocks are reviewed here, selected 
based on their potential to sustainably supply biomass with minimal impacts to current 
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agricultural production or agro-ecosystem carbon storage. The estimated technical 
potential of these resources (Figure ES-1) increase the BT16 volumes by 

• 85 MMT/year annually in a conservative base case, 

• 420 MMT/year in a scenario of greater production incentives, and 

• Up to 1,170 MMT/year in an expanded scenario with more optimistic 
assumptions of technology and land management improvements. 

These values represent estimates of harvestable biomass that are distinct from the more 
detailed economic potentials developed in the BT16. The state of knowledge around the 
sustainability of each feedstock source is also reviewed.  
 
The final section of this report considers sustainable scale-up of the US biomass supply for 
BECCS. It reviews a variety of market and sustainability challenges that have hindered 
expansion of US biomass production. It then presents four sets of principles and enabling 
conditions that could contribute to successfully overcoming those market and sustainability 
barriers, in particular highlighting ongoing challenges in defining science-based indicators of 
broad relevance to local stakeholders.  
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1. 2016 Billion-Ton Report Assessment of 
Residues, Energy Crops, and Wastes 
A robust and economic supply of biomass feedstocks is essential for successful 
development of bioenergy with carbon capture and storage (BECCS) at large scales. The 
2016 Billion-Ton Report (BT16) is the latest in a series of detailed studies that identify 
biomass supply potentials in the contiguous United States.2 The BT16 is broken into two 
volumes. Volume 1 quantifies biomass resources at the county level as a function of price, 
time, and scenario; Volume 2 quantifies biomass sustainability effects of select scenarios 
from Volume 1. Biomass resources are quantified within specified environmental constraints 
at county-level resolution and based on currently managed private lands. Potential 
agricultural and forestry biomass is quantified with economic models that account for 
conventional demands (food, feed, fiber, exports, and forest products) and simulate 
producer response to new biomass markets. Waste resources are quantified separately 
based on US Department of Agriculture (USDA) data and per-capita waste generation 
assumptions from the US Environmental Protection Agency (EPA). Methods and 
assumptions are documented in detail in DOE, Volume 1, for supply quantification. 3 The 
executive summary of DOE, Volume 2, provides an assessment of sustainability constraints 
applied and potential environmental effects.4  
 
From 2015 to 2020, bioenergy comprised ~5% of annual US energy production, produced 
largely from wood, waste, and grains for power, heat, and fuels.5,6 This bioenergy is derived 
from ~360 million dry metric tonnes (MMT) of biomass per year, largely forest mill residues 
for power and corn grain for ethanol. c,7 The BT16 reports that the amount of biomass used 
for energy in the United States could be doubled within economic and environmental 

 
c The BT16 reported biomass volumes in US short tons, which represent 91% of a metric tonne. The tables and figures reproduced from 
BT16 report will reflect the original units. Tables and figures prepared for this report convert data to metric tonnes, or megagrams (Mg). 
Unless otherwise noted, all weights are reported as dry-weight equivalent. The typical feedstock moisture contents range from ~10% to 
50% on a green weight basis.  
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sustainability constraints, and more than tripled when potential future energy crops are 
included (Figure 1), agnostic of end use.  
 
Figure 1. Biomass resources that are currently used, currently available but unused, 
and potential energy crops that could be produced in the future.8 

 

 
This chart assumes roadside prices of $66/Mg, base case agricultural scenario in the near-term, base case and high-
yield scenarios in 2040, and a medium housing low energy demand forestry scenario. Currently used resources are 
based on 2017 values held constant. Adapted from Li et al. (in preparation). 

 
The BT16 reports that an additional 700–1,100 MMT of biomass per year can become 
available beyond the current supply at roadside prices of up to $66/tonne in a mature market 
scenario. Approximately one-third of this supply is currently available in the form of wastes 
and residues at lower prices. The remaining BT16 potentials are based on modeled 
producer response to biomass markets, reallocating ~8% agricultural lands (pastureland 
and cropland) to be managed as perennial crops for biomass. To put this in perspective, the 
27 million acres of cropland that would be reallocated for perennial crops in this BT16 
scenario represent about half of the approximately 52 million acres of cropland idled each 
year.9 The biomass supplies reported in the BT16 provide the foundation for three published 
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assessments of BECCS potential in the United States (as of writing)—Baik et al., Langholtz 
et al., and Larson et al.—which are discussed here.10,11,12  

1.1 Technical potential and cost of biomass 
resources 
The BT16 includes geospatial and economic assessments of currently available but 
underutilized biomass resources, as well as future potential from biomass crops. More than 
640 MMT/year are currently available (about half of which is used) from agricultural 
residues, timberland resources, and wastes.d  The future supply potential from energy crops 
(370–670 MMT/year) are estimated based on productivity data for switchgrass, miscanthus, 
poplar, and willow. The spatial distribution of wastes, agricultural residues, timberland 
resources, and energy crops are illustrated in Figure 2; key attributes of these categories 
are listed in Table 1. Biomass quantities shown are available at $66/Mg before 
transportation and processing costs, but biomass availability generally increases with price.e 
An array of feedstock supplies at various prices and scenario assumptions are available 
elsewhere.f Supplemental materials illustrate the relationship of the biomass resources 
characterized by DOE for the contiguous United States with other potential biomass 
resources discussed subsequently. More information is provided in the executive summary 
of the BT16.13 
 
The BT16 breaks down its results in four feedstock categories: wastes, timberland 
resources, agricultural residues, and biomass crops, as summarized here. 
 
 
 
 
 
 

 
d The USDA Forest Service defines timberland as forestland that can produce more than 20 ft3 per acre per year of 
industrial wood and is not withdrawn from timber utilization by statute or administrative regulation. 
e $66/Mg is based on the price point of $60/short ton in the reference scenario, which is approximately the price where 
diminishing marginal supplies are available at higher costs; costs from $30–$100/short ton are reported at 
https://bioenergykdf.net/2016-billion-ton-report. 
f https://bioenergykdf.net/2016-billion-ton-report  
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Table 1. Estimated quantity (potential above current uses), regional concentration, and 
other considerations for major biomass resource categories14  
 

Resource 

Estimated 
quantity* 

(MMT/year) Region Considerations 
Wastes 130  

(60–190) 
Concentrated 
near 
populations 

>20 waste types, primary and secondary. Favorable public 
perception but can be difficult to sort and process. 
Increasing competition for use 

Timberland 
resources 

90 
(90–230) 

Southeast, 
Northwest, 
and 
Northeast 

~35% logging residues, ~65% small-diameter (<28 cm) 
trees. Larger cull trees are not included.15 Conservative 
estimate of supplies within sustainability and operational 
constraints. Public perception challenges. Markets can 
contribute to sustainable forest management and healthier 
forests. ~20% of this supply is from federal lands 

Agricultural 
residues 

160 
(130–290) 

Corn Belt Seasonally available as a coproduct. Advancements in 
variable-rate harvesting can increase environmental 
benefits and are important to capture full resource potential 

Biomass 
energy 
crops 

370–670 Southern 
Plains and 
Southeast 

Supply consistent with first meeting projected demands for 
food, feed, corn ethanol, fiber, and exports to minimize risk 
of indirect effects. Public perception challenges, but 
perennials offer many environmental benefits and increase 
rural incomes. This potential is modeled to be produced on 
~8% of cropland and pastureland. Transition of light-duty 
vehicles to electric vehicles can reduce corn ethanol 
demand and make more agricultural land available for 
perennial biomass crops 

*Base case: $66/Mg (2014 USD) at roadside (i.e., before transportation and processing), contiguous United States 

 

Figure 2. Spatial distribution of potential wastes, timberland resources, agricultural 
residues, and energy crops estimated for 2040, as shown in Figure 116  
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Wastes 
Organic fractions of municipal solid wastes; fats, oils, and greases; secondary mill 
processing wastes; and manures from confined animal feeding operations represent ~127 
MMT/year of unused wastes that may be available for new uses (Figure 2A), according to 
EPA and the USDA.17 
 
Timberland resources 
The forest products industry in the United States was the largest source of bioenergy in 
2021.18 Economic modeling that considers future forest product demand, timber stand age-
class distribution, and logistical and sustainability constraints found that 88–99 MMT of 
additional biomass can be available annually (Figure 2B).19  
 
Agricultural residues 
Agricultural residues (e.g., corn stover, cereal straw) are currently available as a by-product 
of crop production. Applying constraints for soil conservation, maintenance of soil organic 
carbon (SOC), and logistical operations, DOE estimates 94–160 MMT/year (Figure 2C) 
available with no additional land demands.20 Realizing this full potential may require 
variable-rate harvesting technology, which could simultaneously maximize production and 
soil conservation. 
 
Biomass energy crops 
The BT16 considers switchgrass, miscanthus, and short-rotation woody crops (e.g., poplar) 
as examples of potential biomass crops. These crops are grown only at limited scales today, 
but that can be expanded in response to market demand. Under constraints that prioritize 
demands for food, feed, fiber, and exports, the BT16  estimates that by 2040, energy crop 
production can produce 376 MMT/year in the base case scenario and 668 MMT/year in the 
high-yield scenario (Figure 2D). Perennial biomass crops offer benefits of soil conservation 
and water quality associated with no-till low-input agriculture and could be allocated to 
erosion-prone areas or as vegetative filters to reduce nutrient loading in 
waters.21,22,23,24,25,26,27 
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In summary, the current use of biomass for energy can be doubled by taking advantage of 
wastes and residues from forestry and agriculture, tripled with base case energy crop 
estimates, and quadrupled with high-yielding energy crops by 2040. This expanded supply 
has implications for decarbonization pathways. Assessments of the economically optimal 
use of biomass for carbon avoidance cost are in progress, with BECCS and aviation fuels 
among the priority contenders. Feedstock allocation will be determined by future markets 
and policies. 

1.2 BT16 analysis of sustainability and land 
competition  
Approximately half of the biomass resources explored in the BT16 are available with no land 
use change. These include the wastes, timberland resources, and agricultural residues 
shown in Figure 1, Figure 2, and Table 1, totaling ~380 MMT/year. The additional ~370 
MMT/year of biomass resources in Figure 2 are from dedicated biomass crops, which would 
require land for production. If these biomass crops are produced on pastureland or cropland, 
changes in land management would be required.  
 
As described in the BT16, historic rates of agricultural yield improvements are extrapolated 
into the future in 1%, 2%, 3%, and 4% yield improvement scenarios, which mitigates 
competition for agricultural lands. Still, producing ~370 MMT of biomass crops annually in 
the future involves a shift in land management. In the BT16 base case scenario, these 
biomass crops are modeled to be produced on up to 8% of current pastureland and 
cropland. Analyses of land use implications of the biomass resources reported in the BT16 
and issues related to indirect or market-induced effects on land management are 
documented in Volume 2 of the BT16.28 In summary, those analyses identify beneficial net 
effects associated with increased extent of perennial land cover under BT16 scenarios.  
 
BT16 Volume 2 examines environmental sustainability indicators for biomass crops and 
other resources.29 These sustainability indicators include SOC, water regimes and quality 
(e.g., nitrate, total phosphorus, and sediment concentrations), greenhouse gas emissions, 
biodiversity, and air quality (e.g., carbon monoxide, particulate matter, volatile organic 
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carbons, particulate matter, and sulfur and nitrogen oxides).30 Volume 2 reports that 
deployment of BT16 potential supplies can have neutral or beneficial environmental and 
socioeconomic effects if implemented with best management practices (e.g., employing 
integrated landscape management for optimal energy crop allocation, precision agriculture 
for variable-rate residue removal, and streamside management zones as vegetative 
filters).31 These practices can reduce erosion, improve water quality, and provide improved 
habitat for species of concern relative to alternative land use options.32,33 When best 
practices are employed, biomass resources used in this analysis have the potential to 
contribute to United Nations’ Sustainable Development Goals, such as life on land, life 
below water, affordable and clean energy, decent work and economic growth, sustainable 
cities and communities, no poverty, and climate action, without compromising other 
Sustainable Development Goals.34,35  
 
Simulated increases in national average commodity crop prices associated with producing 
the ~370 MMT/year of biomass crops are listed in Table 2, ranging from 4% to 32% by the 
end of the simulation in 2040 (DOE Table C-9).36 Commodity crop price impacts in the high-
yield scenario are similar to or lower than in the base case scenario because of greater per-
acre yield assumptions (DOE Table C-10).37 Impacts on retail food prices are expected to be 
less than 10% of the impacts on commodity crop prices. USDA-projected demands for food, 
feed, fiber, fuel, and exports are met before simulated markets for biomass additionally 
produce the biomass crops reported in the BT16. Direct land management acreage changes 
associated with this production are also shown in Figure 3. Indirect land use changes 
attributable to price changes reported in Table 2 are possible; these effects can be mitigated 
by using the identified waste and residue resources, using alternative emerging biomass 
resources described in subsequent sections of this report, and through agricultural 
intensification. 
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Table 2. Modeled commodity crop price effects associated with producing 373 MMT of 
biomass crops annually on agricultural lands from the BT16 base case scenario (DOE 
Table C-9) 

 Extended USDA baseline BT16 base case 
Crop 2017 2022 2030 2040 2017 2022 2030 2040 
Corn ($/bu) 3.50 3.65 3.70 3.70 3.49 3.74 3.83 4.03 
Grain sorghum ($/bu) 3.40 3.55 3.68 3.73 3.41 3.87 4.22 4.94 
Oats ($/bu) 2.28 2.40 2.40 2.34 2.27 2.59 2.55 2.75 
Barley ($/bu) 4.08 4.06 4.02 3.94 4.10 4.29 4.22 4.32 
Wheat ($/bu) 4.75 4.85 5.01 5.28 4.72 5.35 5.68 6.48 
Soybeans ($/bu) 8.80 9.40 9.36 9.17 8.83 9.86 10.08 10.97 
Cotton ($/lb) 0.62 0.69 0.72 0.75 0.62 0.75 0.78 0.83 
Rice ($/cwt) 14.90 15.80 16.69 18.29 14.90 15.82 16.86 18.94 

 
 
Figure 3. Agricultural land (millions of acres) managed as annual crops, perennial 
cover, or idle cropland in 2015 and 2040 as estimated under the (a) agricultural 
baseline; (b) base case scenario (BC1); and (c) high-yield scenario (HH3) (Kline et al. 
2017a). 

 
Land allocation for energy crop biomass production in the BT16 can be illustrated in terms of 
current land cover and management (agricultural baseline) and 2040 scenarios for base 
case and high-yield scenarios, as shown in Figure 3. The net effect of energy crop 
production is an increase in perennial cover of 45 million acres, or about 8% of current 
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agricultural land, in the high-yield scenario, or 24 million acres in the base case scenario. 
The latter area coincides with an area of cropland idled in the agricultural baseline, which is 
maintained in each scenario but could be used for perennial crops. 
 
Broader trends in consumer behavior could affect these quantities. Approximately 14% of 
cropland is currently used for first-generation ethanol, and 17% for livestock feed. If the light-
duty fleet is converted from liquid fuels to electric vehicles, or if US demand for beef 
continues to decline with shifts in dietary preferences, decreased demand for corn would 
provide increased opportunities for alternative crops. The BT16 provides details of each shift 
in cultivation simulated to generate the report’s biomass crop supply estimates. 
 
Deep-rooted perennial grasses in the base case scenario are estimated to be produced on 
approximately 8% of cropland and 8% of pastureland, given projected land use 
intensification. One of the most significant factors in modeled energy crop availability is 
management intensive grazing, which has become easier and less expensive since the 
BT16 analysis (Sakas 2021).38 Compared with annual crops that they might replace, deep-
rooted perennial grasses reduce soil erosion, increase SOC, and provide greater wildlife 
habitat value.39,40,41 As discussed in the previous section, integrated landscape 
management is proposed as a strategy to locate biomass energy crops where they provide 
benefits of reduced erosion, increased SOC, improved water quality, and economic 
advantages. 
 
In summary, BT16 Volume 2 reports detailed analyses of potential land competition and 
corresponding induced changes.42 Minimal potential was found for negative indirect effects 
for the scenarios documented in the BT16. Additionally, several potential positive indirect 
effects on land conditions were identified; based on observations, these could be significant 
and amplified with targeted incentives to continue to expand improved land management by 
incorporating perennial cover on agricultural landscapes.  
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Table 3. Biomass feedstock supplies, sustainability attributes, and models43 

 Logging residues Trees <28 cm 
DBH2 

Biomass energy 
crops Agricultural residues 

Potential supply1 
(MMT/year in 2022; 
2040) 

17; 19 88; 86 0; 670 94; 160 

Examples 
Tops and limbs 
from conventional 
forest operations 

Small-diameter 
(<28 cm) trees 
from timberlands. 
Larger cull trees 
not included44  

Switchgrass, 
miscanthus, willow, 
poplar 

Corn stover, wheat straw 

Sustainability 
constraints 

Sensitive lands excluded, no road 
building, costs assume best 
management practices, harvests are 
less than growth, >30% of logging 
residues left for soil conservation. 
Naturally regenerated stands not 
replaced with plantations 

Demands for food, 
feed, fiber, and 
exports met before 
biomass resources 
are available 

Constrained for soil 
conservation and SOC3 

Assessment model 
and source ForSEAM45 POLYSYS46 

Sustainability 
considerations47 

Should be tailored 
to site-specific 
silvicultural 
conditions 

Can be from forest 
thinnings to favor 
larger trees and 
fire risk reduction, 
or short-rotation 
plantations  

Can be established 
on agricultural lands 
as an alternative to 
row crops to conserve 
soil, improve water 
quality, and improve 
farm incomes 

Can enhance soil 
conservation when 
practiced with no- or 
reduced-till agriculture, 
cover crops, and 
precision/variable rate 
harvesting. 

1 Cumulative supply at roadside at prices up to $110/Mg (including production and harvest but excluding transport 
or processing). Excludes ~15 MMT/year potentially available from federally owned timberlands48  

2 Diameter at breast height 

3 Constrained to not exceed the soil loss limit of the USDA Natural Resources Conservation Service based on the 
Revised Universal Soil Loss Equation 2 and the Wind Erosion Prediction System49,50  

1.3 Forest cover and management 
The ~750 million tonnes of biomass resources per year identified in the BT16 are modeled 
without conversion of forest land, and no expansion of forest plantations for biomass 
production is allowed. Forest managers can use two broad types of regeneration: naturally 
regenerated stands, and planted trees (plantations). The forest resource analysis in the 
BT16 does not permit naturally regenerated stands to convert to biomass plantations, nor 
clear-cutting of naturally regenerated stands for biomass. Of the 750 MMT of biomass 
potentially available per year in the base case scenario, 86 MMT/year comprise small-
diameter trees from timberlands, primarily in the Southeast (Figure 2).51 This supply is 
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equivalent to ~0.3% of growing stock on timberlands, ~26% of annual removals, and ~28% 
of mortality reported by the USDA Forest Service.52 This biomass can be harvested from 
forest thinnings, forest plantations, or a combination of both. Reviews of potential impacts on 
biodiversity report that the projected harvest intensity in each ecological region (Figure A-1) 
is so small (generally <2% for most regions) that it is unlikely to cause detrimental 
biodiversity responses.53,54 Impacts can arise in specific sites, and beneficial effects can be 
derived from the removals of excess undergrowth and invasive species that improve habitat 
conditions for species of special concern.55  

1.4 Potential BECCS Sites and Deployment relative 
to BT16 Feedstock Supplies 
Previous analyses have considered the spatial distribution and economic accessibility of 
biomass resources from the BT16 in relation to potential geological storage basins in the 
potential deployment of BECCS. Assuming biomass resource data from the BT16, Baik et 
al. report that 30%–38% of potential biomass supplies are collocated with storage 
basins.56,57 This corresponds to negative-emissions potential from BECCS of up to 400 
MMT CO2 for BT16 supplies in 2020 and 1,780 MMT CO2 for BT16 supplies in 2040. 
Accounting for storage colocation, volume, and injectivity reduces these potentials to 110 
MMT CO2 in 2020 and 630 MMT CO2 in 2040. Larson et al. use the near-term (wastes, 
residues, and forestland resources) and long-term (added biomass crops) biomass 
resources from the BT16 to explore a range of scenarios for the United States to achieve 
net carbon neutrality by 2050.58 In four of five decarbonization scenarios, BECCS is 
included as a conversion technology, and H2 production from biomass with carbon capture 
and storage provides an additional key technology to achieve net carbon neutrality. Their 
scenarios suggest that 8–19 exajoules of H2 from biomass could be provided with carbon 
capture and storage. Langholtz et al. build on the Baik analysis, adding costs and CO2 
budgets across the supply chain to quantify the potential spatial distribution of biomass 
resources used (Figure 4), potential BECCS facility locations (Figure 5), and associated 
carbon avoidance cost curves (Figure 6).59 Under a long-term scenario using up to 740 
MMT of biomass per year, up to 128 BECCS facilities are potentially sited, depending on 
supply chain configurations. This results in up to 737 MMT CO2 potentially sequestered 
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annually at scenario-average costs ranging from $42 to $92/Mg CO2. These optimistic cost 
results reflect the benefit of the combination of negative emissions through carbon capture 
and storage and avoided emissions through displaced fossil generation from BECCS 
facilities.  
 
Figure 4. Potential biomass deployment scenario for BECCS in the long-term 
pulverized combustion scenario, including CO2 abatement scenarios ranging from 
10% to 80% of maximum potential, from Langholtz et al.60 

 
Interactive visualization available at https://doi.org/10.11578/1647453 Langholtz et al.61  
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Figure 5. Potential facility locations for BECCS deployment scenarios from Langholtz 
et al.62   

 
Interactive visualization available at https://doi.org/10.11578/1647453 Langholtz et al. 63   
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Figure 6. BECCS scenario-average CO2 avoidance costs ($/Mg CO2) by CO2 
sequestered (MMT/year) under the natural gas combined cycle (NGCC) reference 
scenario, net after supply chain emissions for the four BECCS scenarios: 2020 
integrated gasification combined cycle (IGCC) conventional, 2040 (IGCC) conventional, 
2040 pulverized combustion pellets, and 2040 IGCC pellets.  

 

 
“Conventional” refers to biomass handled as chips or bales; “pellets” refers to biomass converted to pellets in process 
depots. 
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2. Building on the BT16: Assessing Other 
Emergent Feedstocks for BECCS 
Although the BT16 presents an authoritative view of future biomass supply potential, it was 
not meant to be comprehensive across all potential sources of ligno-cellulosic biomass 
feedstocks. Other potential sustainable feedstock sources have been articulated that merit 
additional consideration or further research. These include biomass crops grown on 
reclaimed or improved land, on “spared” agricultural land or Conservation Reserve Program 
(CRP) land, or in rotation with annuals; rotation intensification with winter cover or cash 
crops; genetic improvement of energy crops; and others. Table 4Error! Reference source 
not found. lists estimates of potential feedstock supply from these different categories. 
These categories all represent potential sources of ligno-cellulosic biomass suitable for 
various BECCS applications, proposed with sustainability in mind and designed to minimize 
competition with existing agricultural commodity production and/or to improve SOC and soil 
health. These categories are complementary to the BT16 and represent additional potential 
feedstock resources. However, the estimates in Table 4 generally consider a qualified 
technical potential for feedstock production, rather than the more carefully calculated 
economic potentials at specific price points explored in the BT16 using a consistent set of 
land and cost assumptions. Thus, care should be taken when comparing these estimates to 
the BT16 estimates in Table 1.  
 
Here, feedstock estimates are differentiated based on three different scenarios: 
 

• Base case—This consists of potential feedstock supplies that could likely be 

realized with minimal changes in policy, agricultural technology, or land cover and 

management (e.g., avoiding detrimental land use change). For example, winter 

cover crops are a potential feedstock source that could be integrated into existing 

annual crop rotations in the near term, with existing cropping technology, within 
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existing agricultural landscapes, and avoiding indirect effects on land elsewhere. 

Expanding acreage of winter cover crops is an example of improved land cover 

and management.  

• Incentivized scenario—This consists of potential feedstock supplies that may 

involve barriers requiring significant incentives, investments, or policy changes to 

overcome before the supply could be realized. For example, it may be possible to 

source large volumes of biomass from dedicated energy crops grown on 

reclaimed mine land, though this would likely require further improvement and 

regional adaptation of such crops, development of best management practices on 

highly degraded mine land sites, or policy incentives to monetize the value of 

ecosystem services.  

• Expanded scenario—This consists of more speculative feedstock supplies that 

have not been well explored in the existing literature but merit further study and 

quantification. For example, exploratory work has examined the potential for 

genetic improvement and expanded cultivation of Crassulacean acid metabolism 

(CAM) photosynthesis crops in dryland systems, though the evidence base for 

such approaches is still limited. In these cases, initial back-of-the-envelope 

calculations were assembled to put the potential scale of feedstock supply in 

perspective.  

Table 4 breaks down feedstock supply estimates in terms of the relevant land area, the 
average yield of biomass per unit land, the total estimated biomass resource, and their 
approximate geographic distribution using the USDA Farm Resource Region system 
illustrated in Figure 7, which can provide a rough comparison to the BECCS deployment 
scenarios illustrated in Figure 4 and Figure 5.64 In several places where literature estimates 
include highly optimistic yield assumptions, an alternative adjusted estimate is presented 
based on a standard yield estimate of 10 metric tonnes per hectare (Mg ha-1) per year for 
dedicated energy grasses (shown in red italics). Where independent estimates of land area 
are not present, land area data from the USDA Major Uses of Land in the United States 
2017 report Bigelow and Borchers are used, as per Merrill and Leatherby.65,66  
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Table 4. Other potential novel feedstock sources 
 Land base 

(Mha) 
Avg. yield 
(Mg ha-1 y-

1) 

Resource size 
(MMT y-1) 

USDA Farm 
Resource Region(s) 

Source Direct crop 
displace-
ment risk 

SOC 
gain 

Biomass crops on 
reclaimed or 
improved land 

5.8 25 
  

10 

145 
 

58 

N. Crescent, 
Basin/Range 

Milbrandt et al.67 
(assuming 10 Mg 
ha-1 y-1) 

  

Biomass crops on 
“spared” 
agricultural land 
or CRP land 

20 
   

4.5 

10 
   

10 

200 
   

45 

Heartland, Prairie 
Gateway 

Rizvi et al.68  

—   

Biomass crops in 
rotation with 
annuals 

10–26 (in 
any given 

year) 

6.8–7.9 69–193 Heartland, Prairie 
Gateway 

Englund et al. 
2021)69     

Rotation 
intensification 
with winter cover 
or cash crops 

27 

 

58 

6.2–8.1 

 

1.7–2.4 
(oilseed 

residue) and 
4.2 (fescue) 

170–220 

 

65 

Heartland, Prairie 
Gateway 

 

 

 

Kemp and 
Lyutse70 

Adapted from 
Taheripour et 
al.71  

  

Genetically 
improved crops in 
semi-arid and arid 
areas 

26 10 260 N. Plains, Prairie 
Gateway 

— 

  

Forest fuels 
reduction 

— — 7–118 Basin/Range, 
various others 

Adapted from 
Cabiyo et al.72    

Residues from 
misc. sources 

2.5–6 5 12–31 Various —   

Red italics denote back-of-the-envelope estimates assuming a fixed universal biomass crop yield or other 
simplifications; other estimates are model-based and spatially resolved. For the two right-most columns, green 
shading denotes feedstocks with minimal risk for indirect land use change that are expected to increase local SOC 
storage. Red shading denotes greater environmental sustainability risks. Yellow shading indicates intermediate risks 
(assessed qualitatively and explained in more detail in the main text). 
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Figure 7. USDA Farm Resource Regions denote broad areas supporting similar 
agricultural production patterns. 

 

 
The patterns represent a simplified version of the USDA Soil Conservation Service Land Resource Regions, aligned 
with NASS Crop Reporting District boundaries.73 

 

The final two columns in Table 4 are qualitative assessments of potential competition for 
land resources with other sectors [referred to as food vs. fuel or indirect land use change 
effects]; and effects on SOC levels.74,75,76,77,78,79,80,81,82 These novel feedstocks were 
selected for their potential to minimize competition with existing production and thus be 
neutral or even beneficial in terms of indirect effects. For example, integrating winter 
oilseeds into existing crop rotations can improve the overall profitability and environmental 
sustainability of operation, leading to more widespread adoption of such rotations in addition 
to the increased supplies of high-protein biomass and oils. SOC represents a large reservoir 
of ecosystem carbon and a central element of soil health and fertility, though historic 
agricultural activity has caused a loss of >100 Gt of SOC to the atmosphere.83 Feedstock 
production that contributes to increasing SOC stocks is aligned with the broader goal of 
sustainable intensification and contributes to healthier, more productive soils available for 
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future agriculture.84 Feedstock production by these means avoids creating new demand for 
arable cropland and provides a clear basis for establishing carbon additionality (i.e., 
expressing the carbon benefits of bioenergy/BECCS production in terms of increased 
ecosystem carbon fluxes resulting from feedstock production).85,86 Finally, increasing SOC 
improves the perceived “naturalness” of different carbon management approaches and may 
contribute to improved public perceptions of BECCS and increased social license to 
operate.87 
 
Market interactions and environmental effects can involve trade-offs and synergies that 
merit assessment, considering land suitability and integrated land planning designed to 
optimize benefits to society while advancing toward multiple social, environmental, and 
economic objectives. Such analyses require site- and context-specific study.88 Once options 
are more clearly defined within a specific context, more specific assessments can consider 
the inherently complex interactions among markets, social wellbeing, and environmental 
conditions.  

2.1 Biomass crops on reclaimed or improved land 
One of the most promising routes to low-impact feedstock production is to target former 
mine land or brownfield sites. Such areas are often highly disturbed and currently do not 
support agricultural production. Poplar has long been studied as a means of reclaiming and 
remediating mined areas where the topsoil has largely been stripped away. Highly disturbed 
sites have difficulties supporting even perennial crops. However, many studies have 
explored using biochar for land remediation/reclamation, especially of highly disturbed 
mining areas (e.g. Ippolito et al.) or other industrial sites with heavy metal contamination.89,90 
In these situations, biochar can serve as an enabling technology, allowing feedstock 
production on land that would otherwise be biophysically or economically unlikely to support 
it. Biochar can also be used to manage soil acidification and aluminum toxicity, though it 
competes with other low-cost and widely available liming agents in those applications, so it 
is not considered as a separate novel feedstock production category in this assessment.91,92  
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Technical potential 
Adapting a prior model-based estimate from Milbrandt et al., an annual technical potential of 
58–145 MMT from dedicated energy crops grown on 5.8 million hectares (Mha) of reclaimed 
mine land and brownfield sites is estimated, as detailed in Appendix section A1.93 These 
sites are widely distributed across the Northern Crescent and Basin and Range Farm 
Resource Regions (Figure 7). No supply is assumed in the base case scenario, 
58 MMT/year under the incentivized scenario, and the more optimistic 145 MMT/year supply 
estimate from Milbrandt et al. under the expanded scenario.94 
 
Sustainability outlook 
Restored mine land and other industrial sites are typically highly disturbed, often lacking the 
upper organic matter–rich layers of the soil profile entirely. If perennial crops can be 
successfully produced in such areas, they would likely lead to a substantial SOC increase, 
reduced erosion and runoff pollution, and a variety of additional ecosystem services. A 
hybrid strategy of using carbon-negative biochar to reclaim land for carbon-negative BECCS 
feedstock production has been suggested.95 This hybrid land restoration strategy would 
increase SOC levels through both biochar application and the ongoing cultivation of deep-
rooted perennials and would offer economic development opportunities in rural areas 
impacted by the transition from fossil to renewable energy. Biochar also has an N2O 
suppression effect, reducing the greenhouse gas emissions burden of fertilizer application in 
biomass crops.96  

2.2 Biomass crops on “spared” agricultural land or 
CRP 
In 2021, approximately 9 Mha (22 million acres) of US cropland were held out of annual crop 
production and managed for conservation purposes via CRP contracts. Various studies 
have examined the possibility of managing a share of these lands for periodic cellulosic 
biomass harvests that can be timed to facilitate wildlife management or other conservation 
objectives. For example, case studies are described in the Antares Landscape Design 
Project Final Report.97 Such strategies can support multiple land management and 



 

Sustainably Sourcing Biomass Feedstocks For Bioenergy With Carbon Capture And Storage In The United States 

 22 

conservation goals while providing income to landowners and feedstock for biobased 
industries. 
 
Alternatively, the physical footprint of existing row-crop agriculture can potentially be 
reduced to free up more land for land-based mitigation measures, such as energy crops and 
other natural climate solutions. Such land sparing could be enabled through ongoing steady 
improvements in agricultural productivity or demand-side measures such as dietary shifts 
and reductions in food waste.98,99 Historic improvements in per-area crop yields have led to 
increased overall production despite a trend of slightly declining total US cropland area 
since the 1970s.100 However, the degree to which these improvements can be sustained in 
a changing climate is uncertain.101 Biochar application can improve agricultural yields in 
tropical climates and/or poor (e.g., acid, coarse-textured) soils but is unlikely to significantly 
increase yields or spare land when applied to high-quality intensively managed US 
croplands.102  
 
Technical potential 
Current CRP policy prohibits biomass production, so this feedstock source is not considered 
in the base case scenario. For the incentivized scenario, a simple back-of-the-envelope 
estimate suggests that converting half of the current 9 Mha of CRP land to energy crops 
could produce 45 MMT/year, assuming a conservative energy crop yield rate of 10 Mg ha-1 
y-1. More ambitiously for the expanded scenario, Rizvi et al. suggest that following USDA 
guideline diets in the United States could spare approximately 20 Mha of current agricultural 
land, primarily cropland used to produce grain for livestock (Heartland and adjacent 
regions).103 Under the same yield assumption, a total of 200 MMT of biomass could be 
produced annually on this spared cropland.  
 
Sustainability outlook 
Land sparing and abandoned cropland reoccupation do not conflict with existing agricultural 
production. Converting annual cropland to perennial energy crops is expected to increase 
SOC storage, though SOC may be transiently reduced when CRP is converted to energy 
crops depending on the establishment method. Cultivating perennial energy crops is one 
strategy for restoring degraded cropland, which would presumably improve the soil health 
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and productivity of such lands if these needed to be pressed back into food production in the 
future.104,105,106  

2.3 Biomass crops in rotation with annuals 
Instead of the long-term conversion of annual cropland to perennials discussed in the 
previous section, perennials can be integrated for short periods within annual crop rotations. 
Perennial cover in a long-term rotation with annuals is one of the oldest and most common 
forms of swidden agriculture (i.e., shifting cultivation). Rotation of perennial crops such as 
mixed grasses and alfalfa for hay with annuals remains a common strategy on modern 
farms to rest and rejuvenate soils between periods of continuous annual commodity 
production (e.g., rotations of corn, soybean, wheat). Such approaches can be particularly 
valuable in arid regions where risk of annual crop failure is high, and perennial cover builds 
soil conditions that reduce such risks. 
 
Technical potential 
Englund et al. modeled the technical potential to provide sustainable biomass and SOC 
increases from implementing such rotations on degraded cropland across Europe that has 
suffered significant historic SOC losses.107 They estimated that integrating mixtures of 
perennial energy grasses (miscanthus, switchgrass, and reed canary grass) and clover over 
2 to 4 year intervals within annual crop rotations could produce 102–286 MMT biomass per 
year. This is scaled by 0.68 (the ratio of total 2020 crop production in the United States 
compared to Europe, as per Food and Agriculture Organization statistics, assuming the 
same average yields) to arrive at a back-of-the-envelope estimate of 69–193 MMT/year 
potential from perennial crop integration into US annual rotations (using the lower bound in 
the incentivized scenario, and the upper bound in the expanded scenario). Biomass 
potential from these rotation crops is excluded from the base case scenario.  
 
Sustainability outlook 
Soil improvement is a central rationale for this cropping system, and Englund et al. 
estimated an average SOC increase rate of up to 0.14 metric tonnes of carbon per hectare 
per year (Mg C ha-1 y-1) over the three decades following the integration of perennials into 
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annual crop rotations.108 Such integration would take approximately one-third of all affected 
cropland out of production each year, which could generate substantial indirect effects. 
However, Englund et al. suggest that this impact could be reduced in part through the 
recovery of protein from the harvested biomass, and from the positive effects of increased 
SOC on yields during the annual crop years of the rotation.109 

2.4 Rotation intensification with winter cover or 
cash crops 
Cover crops (i.e., temporal intensification) provide an alternative feedstock source from 
existing agricultural lands and can contribute to beneficial changes in terms of erosion 
control, moisture retention, soil carbon, and nutrient cycling.110,111 Common cover crops that 
are disced into the soils as “green manure” in the spring typically involve mixes of grasses 
(e.g., rye, oats), legumes (e.g., clover, vetch, peas), and brassicas (e.g., radishes, turnips). 
Cover crops can alternatively be harvested if conditions (e.g., yield, market, weather) are 
favorable. When planting cover crops for potential harvests, a single variety is preferable, 
adapted to the location. Crops with potential markets include rapid-maturation grasses (for 
cellulosic biomass) or oilseeds, such as carinata (i.e., Ethiopian mustard) in the Southeast 
or pennycress in the upper Midwest.112,113 Although oilseeds are primarily valued as a 
source of lipids to produce sustainable aviation fuels and other high-value products, 
separating out their lipid and protein content leaves a fiber coproduct with potential value as 
a BECCS feedstock. Recent studies offer insight into potential opportunities to generate 
biomass from integrated production systems for multiple markets rather than assuming 
competition for land among exclusive land uses. In this case, with adequate incentives and 
assurance of market demand a cover crop can generate climate benefits and additional 
biomass.114,115,116,117 
 
Technical potential 
Taheripour, Sajedinia, and Karami identified potential to produce winter oilseeds every other 
year on up to 50% of US corn–soy rotation land (29 Mha; primarily in the Heartland region) 
during fallow periods, resulting in a double-crop of oil seeds (i.e., cover crop harvest in the 
spring, soy in the fall).118 Combining their 1.7–2.4 Mg ha-1 oilseed yield estimate with an 
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oilseed fiber content of 0.35% Carré et al. suggests a potential to coproduce 10 MMT of 
BECCS feedstock annually.119 These and other estimates of winter oilseed production are 
reviewed in Appendix section A2. Additionally, a fast-growing annual grass such as fescue 
could be cultivated during the non-oilseed preceding corn, and annually on the other 50% 
(29 Mha) of corn–soy rotation land. Assuming an average yield of 4.2 Mg ha-1 and the ability 
to harvest that biomass on average 30% of time, this results in an additional 55 MMT 
biomass per year, for a total of 65 MMT/year.120 Given that these measures can be readily 
adopted within existing annual crop rotations, this value is used in the base case scenario. 
This estimate of BECCS feedstocks from winter cash and cover crops is, however, 
conservative compared with back-of-the-envelope estimates of Kemp and Lyutse.121 In their 
moderate estimate, cover crops are adopted on 30% of appropriate cropland (27 Mha), 
producing 170–220 MMT/year. The lower bound of that range is used in the incentivized 
scenario, and the upper bound in the expanded scenario. 
 
Sustainability outlook 
The soil carbon benefits of winter cover crops (where aboveground biomass is typically 
mulched or tilled back into soil prior to summer cash crop planting) are well established, with 
meta-analyses reporting SOC increases of 0.3–0.5 Mg C ha-1 y-1, as detailed in the 
Appendix section A3. Winter crops harvested for biomass will likely have somewhat less soil 
carbon sequestration because the aboveground biomass is harvested. Using a carinata 
cover crop modeled with DayCent, for example, SOC sequestration is expected to increase 
at a rate of ~0.1 Mg C ha-1 y-1 when carinata is grown once every three winters in existing 
crop rotations.122 Additionally, replacing winter fallow periods with cover or cash crops may 
affect summer crop yields, depending on many factors including prior soil conditions, 
nutrient cycling, and the prevailing weather conditions in the spring and fall.123 A literature 
review by Abdalla et al. showed a central tendency of a 4% reduction in main summer crop 
yield associated with the adoption of cover crops, but a positive effect on yields from cover 
crop mixes that include legumes. Similarly, Deines et al.  used remote sensing to study yield 
effects across 90,000 fields in the Corn Belt where cover cropping was adopted and found a 
5.5% reduction in summer corn yields and a 3.5% reduction in soybean yields.124  



 

Sustainably Sourcing Biomass Feedstocks For Bioenergy With Carbon Capture And Storage In The United States 

 26 

2.5 Genetically improved crops in semi-arid and 
arid areas 
Large research efforts are devoted to improving energy crop productivity on marginal 
lands.125 Efforts to improve crop water use efficiency may be particularly important given the 
large areas of semi-arid and arid lands in the United States, many of which have been over-
exploited by livestock grazing and affected by erosion and other forms of soil degradation. 
Even small improvements in crop productivity and management can lead to significant 
biomass production on this large land base, along with other benefits in terms of habitats, 
water cycling, soil carbon storage, and so on. Crops such as agave that use the CAM 
photosynthetic pathway are particularly promising because they achieve high water use 
efficiency by assimilating carbon at night and thus are well adapted to rain-fed production in 
semi-arid regions.126 Breeding and improvement of such CAM crops may create new 
opportunities in biomass production, increasing the total land area where cultivation 
becomes viable. Because of the technology barriers involved, this potential feedstock is only 
considered in the expanded scenario. 
 
Technical potential 
It is difficult to quantify how genetically improved crops could increase the viability of 
biomass production in marginal semi-arid or arid landscapes. The rain-fed yields of current 
agave species range from 1 to 25 Mg ha-1 across the semi-arid and arid regions of North 
America.127 For a preliminary back-of-the-envelope estimate, future crop improvement 
efforts are assumed to lead to consistent achievement of 10 Mg ha-1 of CAM crops on 
average across the 265 Mha of US pasture and rangeland. Cultivating such crops for 
biomass on 10% of US pasture and rangeland would thus produce 260 MTT of feedstock 
annually. 
 
Sustainability outlook 
More intensive management of livestock production could spare rangeland for biomass 
production from CAM crops. Achieving higher productivity on these lands not only implies 
more carbon storage but also higher resilience and less conflict with lands currently used for 
other purposes (e.g., feed and food production). 
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2.6 Forest fuels reduction 
Many dry western low-elevation forests are overstocked because of post-settlement 
management practices such as fire suppression and livestock.128 Thinning such forests can 
have important benefits for wildfire management and restoration of forest diversity, and 
expanded forest management has been a priority of the Biden administration through the 
Bipartisan Infrastructure Law and other policies. The use of fuel reduction and restoration 
treatment biomass as a feedstock source is covered in detail in a companion white paper 
within the same Energy Futures Initiative BECCS series.  
 
Technical potential 
Cabiyo et al. estimated that 7.3 MMT of biomass could be generated annually from 
California forests under scenarios of expanded forest thinning and fuels reduction 
treatments, a value adopted in the base case scenario.129 The back-of-the-envelope 
estimate for the incentivized scenario scales that figure to cover the total US timberland area 
(×8.1), resulting in a total feedstock potential of 59 MMT/year. For the expanded scenario, 
the combined effects of futures subsidies, increases in forest disturbance, and expansion of 
treatment into woodlands and scrub lands are assumed to conceivably double the resource 
size to 118 MMT/year.  
 
Sustainability outlook 
Thinning and fuels reduction treatments can support management goals including reducing 
fuels loading, make landscapes more defensible, and increase stand value for timber 
production. The degree to which such measures affect forest carbon balance through 
increased productivity or reduced wildfire losses are debated.130,131,132,133 Sustainability 
concerns are covered in greater detail in the companion Energy Futures Initiative white 
paper.  

2.7 Residues from misc. uses 
In many cases, natural vegetation must be managed to preserve land or infrastructure 
functioning. Examples of lands requiring active vegetation management include urban tree 
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management; rural residential areas; farmsteads; rights-of-way along roads, electricity 
transmission lines, cell towers, and renewable energy generation infrastructure; and 
federally owned (e.g., US Department of Defense, DOE) lands. This feedstock is included in 
the base case scenario since the biomass in question already exists and is often already 
managed as a nuisance. With the growth of BECCS markets and incentives, such waste 
biomass could be valorized as a feedstock. 
 
Technical potential 
A rough back-of-the-envelope estimate is derived considering the amount of land classified 
as urban (28 Mha), special use (68 Mha), or miscellaneous (28 Mha) as per Merrill and 
Leatherby.134 Biomass is assumed to be recovered from 2% of this land base in the base 
case scenario, 3% in the incentivized scenario, and 5% in the expanded scenario. Native 
vegetation in those areas is assumed to yield 5 Mg of dry biomass per hectare per year 
based on the lower end of the range of prior modeling in the eastern United States (Field et 
al. 2020), which is equivalent to half of the standard yield assumption of 10 Mg ha-1 for 
managed energy crops. This results in an estimate of 12, 19, and 31 MMT y-1 feedstock in 
those scenarios, respectively.135  
 
Sustainability outlook 
As a waste material that is often already managed and disposed of via composting, 
landfilling, or burning, levering this biomass as a BECCS feedstock should incur minimal 
environmental impacts.  

2.8 Comparison to biomass crop estimates on 
abandoned or marginal land 
Many studies have considered the potential of dedicated energy crop production on 
abandoned or marginal agricultural land.136,137,138 These definitions are typically based on 
land use history or land quality and may manifest as a variety of current land covers (e.g., 
idle land, pasture). Therefore, these estimates cannot be compared directly with the BT16 
resource assessment (which did not model land use change as a function of land quality or 
previous land use history) or with most of the emergent feedstock categories explored here. 
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However, these estimates can be used as a “reality-check” against which to compare the 
total estimates of the BT16 and non-BT16 energy crop feedstocks tabulated previously.  
A variety of such estimates is listed in Table 5, and in Figure 8, is compared with the total 
estimate of energy crop potential. The estimates of total feedstock potential from energy 
crops (including those quantified previously in the BT16 and those explored for the first time 
in Table 4) range from 370 to 1,200 MMT/year, depending on the scenario. These estimates 
fall largely within the range of energy crop production potential assessed previously on 
marginal (400–1,750 MMT/year) and abandoned (100–1,600 MMT/year) croplands. Thus, 
energy crop modeling based on current land cover definitions, land use history, or 
land quality all indicate a broadly similar range of feedstock production potential.  
 
Table 5. Energy crop production on abandoned and marginal lands (a non-independent 
feedstock estimate, to be used strictly as a reality-check) 
 Land base 

(Mha) 
Avg. 
yield 

(Mg ha-1 
y-1) 

Resource size 
(MMT y-1) 

USDA Farm Resource 
Region(s) 

Source 

Crops on historically 
abandoned or 
transitional 
agricultural land 

10–58 

45 

10 

14–39 

100–580 

560–1580 

N. Plains, Fruitful Rim 

S. seaboard, N. Crescent 

Jiang et al. 139 

Zumkehr and Campbell140 

Crops on marginal 
(degraded or low-
yielding) agricultural 
land  

43–127 

55–173 

80 

121 

10 

10 

10–12 

3.1 

430–1270 

550–1730 

780–940 

380 

N. Crescent, Miss. Portal 

N. Plains, Prairie Gateway 

Heartland, Prairie Gateway 

N. Plains, Prairie Gateway 

Yang, Zhao, and Cai 141  

Cai, Zhang, and Wang 142 

Nijsen et al.143 

Milbrandt and Overend 144 

Red italics denote back-of-the-envelope estimates assuming a fixed universal biomass crop yield or other simplifying 
assumptions; estimates in black are model-based and spatially resolved. 
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Figure 8. Estimates of biomass crop production potential on spared cropland and 
reclaimed land from this study (blue bars) in comparison to published estimates of 
energy crop production potential on abandoned or marginal agricultural land (blue 
symbols). 

 
Because these estimates of energy crop potential on marginal/abandoned lands are derived from various non-
commensurate land definitions, they potentially overlap with the BT16 and non-BT16 supply potentials illustrated in 
the bar chart, and thus they should not be considered additive with those estimates or with one another.  

 
Energy crops on historically abandoned or transitional agricultural land 
The Northeast and Southeast United States have historically experienced large amounts of 
cropland abandonment and reforestation as commodity crop production shifted toward the 
Corn Belt and other regions.145 Any abandoned cropland that has not reforested or been 
developed offers an attractive target for bioenergy feedstock production because it does not 
currently support food production. In many cases, abandoned cropland is subject to 
unmanaged secondary succession (i.e., spontaneous revegetation).146 Because the 
secondary succession of native vegetation may in many cases proceed slowly, such areas 
may not yet have recovered their original native carbon storage or ecosystem service value 
(Isbell et al. and thus may offer an opportunity for relatively low-impact feedstock production 
(Khanna et al.; Field et al..147,148,149 Cultivating dedicated perennial crops on former cropland 
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is usually associated with increases in SOC.150,151 In the case of cropland that has been 
abandoned for some time, SOC outcomes will depend on what has occurred on that land in 
the time since abandonment.  
 
Historically abandoned cropland is concentrated in the Northeast, Southeast, Midwest, and 
Great Plains.152,153 Based on analysis of historic county cropping records, Zumkehr and 
Campbell estimated that as many as 45 Mha of abandoned cropland may exist across the 
United States suitable for bioenergy crop production (i.e., that has not been reforested or 
developed).154 Using a process-based model, they estimated that land could support the 
production of 620–1,760 MMT of biomass per year at a very optimistic average per-area 
crop yield range of 14 Mg ha-1 for switchgrass and 39 Mg ha-1 for miscanthus ( 
Table 5). Jiang et al. (2021) used the remotely sensed Cropland Data Layer product to 
estimate a potential range of 10–58 Mha of transitional agricultural land concentrated in the 
Western Great Plains, Palouse, California Central Valley, and Southwest. Assuming a 
generic biomass crop yield rate of 10 Mg ha-1, this corresponds to a resource potential of 
100–580 MMT of biomass annually.155  
 
Energy crops on marginal agricultural land 
In addition to this historically abandoned cropland, so-called “marginal” cropland at the edge 
of profitability is observed to transition from a cultivated to an idle state depending on 
agricultural commodity prices and other conditions over time.156 These areas have a similar 
sustainability rationale for bioenergy use as historically abandoned cropland; they do not 
consistently support food production at present, and their history of disturbance suggests 
they have limited carbon storage and ecosystem service value compared with undisturbed 
native ecosystems.157 Functional definitions of marginal land are highly varied, ranging from 
indicators such as land capability classification rating, to more detailed biophysical 
productivity indicators, or directly observed via remote sensing (Englund et al. 2023; Schulte 
et al. 2021).158,159,160,161,162,163 Yields of energy crops are lower on marginal lands than on 
prime agricultural land.164 However, energy crops are less sensitive to land quality than 
annual crops, so they can represent the most profitable use of intermediate-quality land 
between prime cropland and land that cannot support cropping.165,166 
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Biophysically marginal land is often concentrated in the Great Plains (i.e., not productive 
enough for annuals, but not so unproductive that the land should be left under native plant 
cover) and Mississippi River Valley.167,168,169 Managing marginal cropland for bioenergy 
production represents an opportunity cost to the degree that it displaces current production 
of annual crops or constrains that option in the future. However, marginal land targeting can 
intensify the management of agricultural landscapes and improve soil quality compared with 
current management.  

2.9 Opportunities from high-power computing and 
big data 
Most of the described feedstock resource estimates are derived from process-based agro-
ecosystem models such as DayCent, process-based Earth system models, statistical 
models, or hybrid approaches that combine modeling with expert.170,171,172,173,174,175,176 
Parameterization of such models typically relies on relatively modest amounts of data, such 
as harvested yields and flux tower measurements of gas exchange from small-scale energy 
crop field trials.177,178,179,180 In a variety of areas, more computationally intensive big data 
approaches can provide new avenues to inform the underlying climate conditions, land 
biophysical properties, and socioeconomic conditions that could support the deployment of 
novel bioenergy crops and associated soil carbon banking and ecosystem service co-
benefits. 
 
Marginal land classification 
Bioenergy cropping is often targeted toward low-value marginal land that minimizes conflicts 
with existing agricultural production and areas of high restoration/conservation value.181 
Ongoing research efforts examine how to better characterize and quantify such land areas 
in the United States. Studies of observed marginal land use transitions have shown that 
marginal land is often associated with intermediate quality biophysical characteristics (i.e., 
lower biophysical suitability than stable cropland, but higher than non-cultivated land).182 
Machine learning approaches have also been applied to analyze the underlying biophysical 
drivers of observed remotely sensed variations in crop.183 This can be used to identify areas 
of the existing cropland that could be more productive and profitable under alternative 
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bioenergy crops, or to estimate the potential productivity of land that is not currently 
cultivated. 
 
However, many of these prior efforts have been based on relatively modest amounts of 
climate data and have used black box methods that cannot necessarily communicate the 
underlying drivers of the patterns observed. In contrast, explainable artificial intelligence 
methods can be utilized to extract patterns from larger volumes of data more 
transparently.184 Furthermore, integrating large volumes of geospatially explicit 
socioeconomic and demographic data with geophysical (land cover, slope, soils) and 
climatic data to improve understanding and forecasting of risks and opportunities is 
becoming more feasible. For example, landowners close to retirement age are correlated 
with the probability of agricultural land retirement and enrollment in CRP.185 Current 
research aims to quantify the importance of specific social factors and corresponding 
biophysical land conditions in determining land management decisions, such as cropland 
retirement or changing forested lands to other non-forest uses.  
 
Biomass crop climate range estimation 
Climate clustering work such as that illustrated in Figure 9 can help identify potential niches 
for new and improved biomass crops.186 Climate clustering is analogous to the designation 
of Land Resource Regions and Major Land Resource Areas by the Natural Resources 
Conservation Service but is more data-intensive and has higher spatiotemporal 
resolution.187 For example, the climate clustering incorporates data including the maximum 
temperature, temperature range, vapor pressure, precipitation accumulation, downward 
surface shortwave radiation, wind speed, reference evapotranspiration, runoff, actual 
evapotranspiration, climate water deficit, soil moisture, snow water equivalent, Palmer 
Drought Severity Index, and vapor pressure deficit to project water availability for vegetative 
growth. Additionally, this climate clustering is not static like the Natural Resources 
Conservation Service designations, but rather can be combined with longitudinal analysis to 
identify areas where important climatic transitions and changes are taking place, as well as 
areas where conditions are relatively stable. The climate clustering approach can be 
combined with observations of candidate energy crop productivity at different sites to 
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capture the underlying climatic envelopes in which such crops thrive. This information can 
be used to generate high-resolution range maps for novel energy crops.  
 
Figure 9. Preliminary results of climate clustering to illustrate potential for selected 
bioenergy crops.188 

 
 
Biogeochemical analysis 
The previous sections focus on how big data and machine learning can inform where 
bioenergy crops might be produced in the future. In addition, such methods may also prove 
useful for estimating the environmental performance of such crops. Ensuring bioenergy 
system sustainability requires understanding of changes in SOC storage, soil N2O 
emissions, evapotranspiration fluxes under bioenergy crop production, and myriad additional 
social and environmental considerations, many of which are site-specific. Modeling SOC 
and N2O is particularly difficult because they show greater spatial and temporal 
heterogeneity than crop yields and are more laborious to measure. 
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Currently, process-based models such as DayCent, RothC, DNDC, and MEMS are used to 
estimate the relevant biogeochemical fluxes of carbon, nitrogen, and water through 
agroecosystems. These models synthesize a variety of hypothesis about the key climatic, 
soil edaphic, and management controls of those fluxes into quantitative estimates. Such 
models were typically developed and parameterized when observations were limited and 
have evolved incrementally as new datasets have become available over the years.189,190 
The details of that evolution and the underlying data sources used is rarely well 
documented. Although interest exists in more formal data–model integration and data 
assimilation, use of these data- and computationally intensive techniques remains limited in 
this application.191  
 
Machine learning can be used to generate new empirical models of and N2O emissions 
outside of existing process-based modeling paradigms.192,193,194 Such efforts can now 
leverage new centralized databases of soil core and N2O emissions data.195,196 Furthermore, 
synthesizing process-based modeling results as inputs to machine learning can be used as 
a proxy for ecological theory and expert opinion, allowing that information to be captured 
within an otherwise empirical modeling approach. This synthesis can help to systematically 
characterize the shortcomings of existing process-based models—information that is 
invaluable to those model development communities. For example, Cengic et al. (2023)197 
report how machine learning of past changes in land cover can be used to provide 
downscaled projections of fine-grained patterns (300 m resolution) of future agricultural 
expansion. 
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3. Sustainable Scale-Up 
Expanding US biomass supplies for BECCS to climate-relevant scales requires a shift in 
understanding, governance, and acceptance of the role of biomass to help societies achieve 
net-zero emissions and other sustainable development goals. Nature-based solutions that 
comprise better management of productive landscapes to provide environmental services 
along with biomass products for food, feed, fiber, and fuels via integrated systems are 
necessary to achieve climate goals.198,199,200,201 However, opposition to bioenergy remains 
strong because of concerns over potential harm associated with environmental effects, 
social effects, and especially resource competition (i.e., alternative uses and products from 
the land, water, and biomass that might otherwise be dedicated to bioenergy and BECCS). 
Despite two decades of intense debate and analyses, no consensus exists regarding the 
scale of bioenergy use that is most beneficial to society, in part because little consensus 
exists on how to consistently and properly measure sustainability.  
 
Key market and sustainability challenges that have hindered scale-up of the US bioeconomy 
are reviewed here, followed by a set of principles and enabling conditions that could help to 
navigate these challenges moving forward. Scaling up US biomass production for BECCS 
and other climate-relevant applications depends on markets; policy frameworks; the timing 
and scale of investments in high-yielding production and more efficient logistics, collection, 
and processing technologies; and overcoming broad sustainability concerns.  

3.1 Challenges for sustainable scale-up  
 
Biomass logistical and market challenges 
Biomass is often bulky, wet, and variable in productivity (e.g., depending on seasonal 
weather and other conditions), which creates special challenges for managing the costs of 
feedstock production, collection, transport, and utilization. Even for cases where biomass is 
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“free” (i.e., an existing by-product of other land management activities), recovery of the 
biomass resource can be difficult and prohibitively expensive. For example, efforts to 
manage forest wildfire fuel load or remove invasive plant species and enhance biodiversity 
generate significant quantities of biomass in specific times and places, yet most of this 
biomass is either piled to decay or simply burned on site for disposal. Similarly, increasing 
frequencies and intensities of extreme weather events (e.g., hurricane, flood, drought, 
derecho winds, ice), saltwater intrusion, diseases, and pests generate large quantities of 
biomass that are usually temporally and geospatially disparate. Such intermittently available 
resources are difficult or impossible to access, collect, and densify without incurring high 
economic costs or causing additional environmental harms.  
 
Broad sustainability definitions 
While the importance of sustainability is increasingly recognized, the term is rarely defined in 
a manner that permits practical applications.202 The 1987 Brundtland definition of 
sustainable development—development that meets the environmental, social and economic 
needs of the present without compromising the ability of future generations to meet their 
own needs—is often cited but is difficult to interpret in practice because it relies on 
subjective values that must be assigned to current needs and the unknown future needs of 
our descendants.203 International standards are also cited but have not been applied 
consistently because of subjective and aspirational recommendations.204 In fact, no single, 
widely accepted, concise definition of sustainability exists that permits evidence-based 
comparison of options and verification of compliance with sustainability goals.205 However, 
this is not surprising given that stakeholders need to define priorities to more toward more 
sustainable practices based on available options in a given place and time.206  
 
For applications relevant to biomass and BECCS, definitions are complex, are politically 
determined, and involve multiple principles, goals, criteria, and indicators—all of which 
require their own respective sets of definitions. Further complicating matters, more than 400 
sustainability standards and measurement schemes have been published and most undergo 
persistent revisions, thus creating moving targets. In addition, the effects of bioenergy will 
always depend on a set of assumed counterfactual conditions (i.e., what would occur in the 
absence of the production and use of biomass for energy). Counterfactual scenarios are by 
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nature impossible to define with certainty, and discrepancies between different 
counterfactual assumptions result in wide divergence in the estimated effects of a given 
bioenergy system.207,208,209 

 

Greenhouse gas emissions accounting challenges 
The emergent feedstock categories assessed in the previous section were selected based 
on the criteria of growing or maintaining ecosystem carbon stocks (in particular, soil carbon) 
and minimizing competition with existing agricultural commodity production. However, 
comprehensive greenhouse gas emissions accounting in bioenergy systems is complex, 
and standardized best practices have yet to be developed for many methodological 
issues.210 Such life cycle assessment methodological issues are covered in a companion 
white paper within the same Energy Futures Initiative BECCS series, and two specific 
concerns are highlighted here. 
 
The carbon neutrality of bioenergy has been widely debated in the literature. Some studies 
have argued that bioenergy can increase CO2 emissions from forest or agricultural lands 
and from biomass combustion.211,212,213 Langholtz et al. included changes in carbon stores 
on the landscape in calculating CO2 sequestration by BECCS, net of CO2 emissions from 
biomass production, and supply chain operations.214 Changes in aboveground vegetation 
may require consideration of a carbon breakeven period depending on local conditions.215 
 
In addition, time accounting for forestry resources, net effects of wildfire fuel reduction, and 
other aspects of woody bioenergy have generated extensive debate and 
misunderstanding.216 The BT16 estimates of forest feedstocks focused on residues and 
small-diameter trees—the harvest of which is not expected to change carbon stocks when 
averaged across the landscape and across time. Furthermore, associated indicators of 
environmental sustainability have been carefully documented.217 However, forests may 
provide a sustainable source of other types of biomass, as well. Forest thinnings in the 
wildland–urban interface can reduce risks of serious disaster, and the use of hurricane and 
storm debris can reduce wastes.218,219,220,221 Additionally, harvest of invasive exotic tree 
species could aid in ecological restoration, and sourcing biomass from agroforestry systems 
can provide multiple agronomic benefits.222 Long-term monitoring and evaluation of 
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environmental and socioeconomic effects is recommended to ensure that potential negative 
effects are avoided and potential positive effects are enhanced.223,224 

 
Concerns about competition with food production 
The concern that BECCS and bioenergy will cause land competition with food production 
reflects the need to implement incentives that would ensure that biomass production and 
use enhances food security and forest conservation goals.225,226,227,228,229,230 From a food 
security perspective, inflation-adjusted commodity crop prices paid to US farmers remain 
near historic lows, US farm bankruptcies have been rising since 2015, and billions of dollars 
are spent annually on US farm subsidies.231,232,233 The BT16 identified opportunities for 
perennial cellulosic biomass feedstocks as an alternative revenue stream for US farmers 
while meeting food production goals. Ongoing dietary shifts (e.g., reduced consumption of 
red meat) and increases in the electric vehicle fleet are among several factors that could 
continue these trends. Of the approximately 1 billion tonnes of potential biomass in the 
United States reported in the BT16, about half is estimated to come from nonagricultural 
sources.234 The remaining portion, in the form of dedicated energy crops, can be produced 
on approximately 8% of US cropland, with modest projected impacts on retail food prices.235  

3.2 Sustainable scale-up principles and enabling 
conditions 
Four principles and enabling conditions are described here that could help this sector to 
navigate these market and sustainability challenges and expand biomass feedstock 
production to climatically relevant scales. 
 
Markets: Consistent price signals, feedstock specifications, and a level playing field 
Cost-effective biomass feedstock supply chains require efficient production, collection, 
processing, and transport of inherently bulky, wet, heterogenous biomaterials. The history of 
successes and failures in recent biomass supply chains suggests that stable, long-term 
biomass markets are key to promote required investments in the necessary equipment and 
technology.236 This includes the need for consistent demand or long-term price assurances 
for investors, as well as clarity regarding biomass supply specifications (e.g., size, density, 
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moisture, ash content). In addition, the fossil-fueled status quo that bioenergy aims to 
displace is often supported by a variety of subsidies, which makes transition much more 
challenging. Removal of fossil fuel subsidies combined with a consistent and appropriate tax 
reflecting the social and environmental costs of fossil fuel use are fundamental policy 
choices that can determine whether renewables will make significant progress in displacing 
reliance on fossil resources (IPCC WGIII 2022).237 
 
Biomass as a coproduct enabling broader lang management goals  
Intensified biomass production specifically for energy purposes (e.g., bioenergy plantations) 
is often proposed to mitigate the costs and challenges of working with more dispersed 
biomass resources. Many sustainability concerns derive from modeling that simplifies reality 
and assumes that the planting, management, and harvests of biomass are performed 
exclusively for bioenergy.238 However, nearly all successful biomass supply chains around 
the world are based on integrated systems that serve multiple sectors, with energy being a 
relatively minor coproduct. For example, although there has been great debate about woody 
pellet fuels, wood used for pellets represents only about 3% of total removals from US 
forests and primarily comprises residues from the larger forest products industries.239 An 
integrated natural resource management perspective considers that biomass can often be a 
useful coproduct of land management geared toward producing multiple services and 
achieving multiple goals simultaneously, including strategic integration with other clean 
energy and sustainable development initiatives. 
 
In any agricultural or forestry system, biomass can be produced in ways that are 
environmentally or socially detrimental or beneficial, depending on practices in the field and 
system-specific contexts.240,241,242,243,244,245,246,247 Biomass supplies that are integrated within 
more sustainable landscape designs can be produced in ways that improve many indicators 
of sustainability.248,249,250,251,252 Improving the mixture and extent of ground cover on 
degraded or eroding lands, or replacing annual crops with perennial grasses in unprofitable 
areas, can be economically preferable while improving water and soil quality and providing 
habitat for pollinators and other wildlife.253,254 Deep-rooted, drought-resistant, perennial 
biomass crops offer strategies to reduce economic risk in climate change and extreme 
weather conditions.255,256 Forest management can benefit from price supports for harvesting 
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small-diameter trees to reduce threats of forest fires, mitigate pine beetle infestations, and 
realize desired future stand conditions. 
 
Equipment and technologies can be mobilized to sites that temporarily offer surplus biomass 
to efficiently process materials to generate standardized, densified feedstocks. Mobile 
biomass processing units could contribute to overall landscape management goals but 
require investments that are unlikely to occur without market assurances and other 
incentives.  
 
Iterative, stakeholder-driven assessment 
Sustainability for bioenergy cannot be easily generalized since needs and conditions change 
over time and space.257 Sustainability cannot be proven beyond doubt based on a standard 
set of paperwork, and defining a single set of valid measures that can be systematically 
applied to assess the sustainability of biomass production and use is difficult.258,259 The 
complexity of human–land interactions means that no static set of standards is appropriate 
and applicable across time, place, and scales (local to global). Addressing sustainability 
concerns and assessing sustainable biomass supply potentials therefore requires a context-
specific, stakeholder-driven, iterative long-term process supporting continual improvement of 
practices for sustainable management in the corresponding sector (e.g., forestry, 
agriculture, processing industries).  
 
Building more sustainable bio-economies is best designed and implemented from the 
bottom up, focusing on concerted actions to provide the right incentives for renewable 
resources to be properly managed.260 Identifying appropriate sustainability indicators must 
involve the diversity of stakeholders affected by renewable energy transitions. Ideally, those 
local stakeholders should be involved throughout the lifetime of a project, including the initial 
analysis of options, identification of desired future conditions, and development of best 
management practices across each stage of the supply chains (biomass production, 
collection, transport, processing, densification or biorefining, pollution controls, utilization). 
Such a local stakeholder-driven process can also inform the highest value uses of biomass 
toward more sustainable land management because the highest-value options depend on 
context.261,262 Iterative stakeholder engagement and sustainability assessment support 
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continual learning, adaptation, and resilience in climate change and under different social 
and economic conditions. 
 

Transparent sustainability monitoring and reporting 
Continual learning also requires monitoring, analysis, communication, and capacity to 
implement decisions that will guide future activities to better achieve goals. Stakeholders 
should be engaged early and persistently to build ownership and capacities to continue 
transparent, evidence-based management and analyses of the effects in their communities.” 
Policymakers can contribute to advancing trust by supporting monitoring systems with site-
specific targets using science-based indicators to measure and document change over time 
(i.e., criteria for sustainability must be relevant to local context), in a manner that enables 
communications and reporting across national or international markets. Verifiable monitoring 
and reporting support transparency and accountability, particularly in support of 
performance-based policies and incentives that are agnostic in terms of feedstock or 
technology. 
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4. Conclusion 
Understanding biomass resource availability is foundational to supporting bioenergy as an 
approach to abating CO2 emissions and meeting climate goals. This analysis reports a 
substantial supply of renewable biomass resources in the United States to support BECCS 
as a negative-emissions strategy. Potential biomass supplies based on the latest DOE 
national biomass resource assessment sum to approximately 750 MMT/year by 2040 in a 
base case, and more than 1,000 MMT/year under market incentives to develop efficient 
supply chains and improve yields. These supply estimates are constrained for economic and 
sustainability criteria while meeting projected demands for food, feed, fiber, and exports.  
 
Known analyses to date indicate that approximately one-third of the BT16 biomass resource 
is co-located in geological basins suitable for CO2 storage, and another third could be 
accessed for BECCS via existing transport infrastructure or piping the resulting CO2 to the 
appropriate location. Key challenges to scale-up include sustained market signals needed to 
reduce investment risks associated with establishment of efficient biomass supply chains, 
and lack of consensus on and social acceptance of practical, locally defined criteria for 
sustainable biomass production and use.  
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5. Appendix 

A1: Technical potential of biomass crops on 
reclaimed or improved land 
Milbrandt et al. quantified a broad set of underutilized land that may be appropriate for 
bioenergy production.263 Their estimate included 5.8 Mha of mine land and brownfield land 
availability, widely distributed across the Northern Crescent and Basin and Range Farm 
Resource Regions. Using county-specific estimates of miscanthus yields from the Energy 
Biosciences Institute’s Biofuel Ecophysiological Traits and Yields Database, they estimate 
this land has a technical potential of 145 MMT of annual biomass production. This 
corresponds to a highly optimistic modeled biomass yield rate of 25.4 Mg ha-1 y-1 across the 
wide range of climates represented across this land base, which seems optimistic. For 
comparable estimates in Table 4, a constant average yield of 10 Mg ha-1 y-1 is assumed, 
more in line with the other studies in this review, which would result in an adjusted potential 
of 58 MMT/year across this 5.8 Mha of land.  

A2: Winter cash and cover crop estimates 
Beyond the Taheripour, Sajedinia, and Karami study cited in the main text, a variety of 
bottom-up studies report the yields of individual oilseed crops over more limited geographic 
regions.264 These include 2 MMT/year for carinata in the Southeast, 23 MMT/year for 
camelina across the Wheat Belt, and 14 MMT/year for pennycress in the Corn Belt 
Together, these sum to 39 MMT/year, compared with an estimate of approximately 
58 MMT/year for all oilseeds from Taheripour, Sajedinia, and Karami.265  
 
Carré et al. report that 29%–43% of oilseed yield tonnage is fiber. The amount of fiber 
potential depends on yields and seed type, with lower fiber concentrations in carinata and 
higher in pennycress.266 
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Kemp and Lyutse estimate US cover crop potential that is double the estimate of this white 
paper based on a model (RyeGro) that identified 39 Mha of land suitable for cover crops and 
assumed an average biomass yield for the 30 locations of 4.2 Mg ha-1 y-1.267 This is broadly 
similar to the method used by Fargione et al. to estimate the cropland area available for 
fallow period cover-cropping (i.e., conservation agriculture) in the United States by taking 
the total area under the five major field crops in the United States as per the National 
Agricultural Statistics Service, and subtracting out the total area under cover crops as per 
the USDA Census of Agriculture.268 Other estimates of global-scale cover crop potential 
based on Siebert, Portmann, and Döll and Poeplau and Don are summarized by Griscom et 
al. (2017).269,270,271 

A3: Effects of cover cropping on SOC 
McDaniel, Tiemann, and Grandy report cover crop adoption associated with 8.5% higher soil 
carbon.272 Poeplau and Don report cover crop adoption associated with soil carbon 
sequestration at rates of 0.3 Mg C ha-1 y-1.273 Abdalla et al.  report cover crop adoption 
associated with soil carbon sequestration at rates of 0.5 Mg C ha-1 y-1 and reductions in 
main summer crop yield of ~4%.274 Jian et al. report SOC increase of 0.6 Mg C ha-1 y-1, with 
the greatest rates observed in fine-textured soils and temperate climates.275 McClelland, 
Paustian, and Schipanski report cover crop adoption associated with 12% higher soil 
carbon, roughly equivalent to an SOC increase rate of 0.2 Mg C ha-1 y-1.276 For comparison, 
meta-analysis shows that removing the residue from summer crop harvest (conceptually 
opposite to cover cropping because it decreases net annual carbon input to the soil) is 
associated with 8% lower soil carbon, whereas residue retention is associated with SOC 
increase of 0.4 Mg C ha-1 y-1.277 
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Figure A-1. Delineation of ecoregion provinces (numbered regions) overlaid on total 
potential acres harvested under the BT16 base case forestry scenario, which had the 
greatest quantity of total acres harvested of all scenarios. 

 
Black letters indicate modeling regions outlined by bold black lines; red numbers indicate province ecoregions. 
Figure from Donner, Wigley, and Miller.278  
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