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Abstract 
This document explores the application of Bayesian inference and Monte Carlo simulations 
to evaluate the cost-effectiveness and likelihood of decarbonizing ethanol. It highlights the 
effects of learning and the economic benefits of reducing greenhouse gas emissions 
through ethanol use. The analysis uses experience curves to estimate the scale of possible 
cost reductions in ethanol production over time, while Monte Carlo simulations provide a 
range of potential outcomes for future costs. The findings suggest decarbonizing ethanol 
can lead to lower costs and significant environmental and economic benefits. 
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I. Introduction 
The purpose of this analysis was to apply techniques of Bayesian inference in order to 
provide an independent assessment of the reasonableness of the cost of GHG emissions 
reductions presented in the EFI Foundation report “A Strategic Roadmap for Decarbonizing 
the U.S. Ethanol Industry.” Specifically, the analysis was designed to confirm or examine the 
likelihood of a similar or comparable set of outcomes as characterized in that report. In this 
case, we explore the likelihood of similar or improved, or an even better, set of outcomes 
than posed by the main narrative and analysis. Bayesian inference is seen as an important 
technique in statistics that relies on a different set of metrics to test and provide an important 
confirmation in the analysis of the ethanol story.1  
 
 
 

II. Comparing the Costs of Ethanol 
Decarbonization Strategies to the Benefits 
Before we confirm the likelihood of the cost estimates of various measures to decarbonize 
ethanol resources, we first examine the costs in relation to the economic and social benefits 
of transitioning to decarbonized ethanol resources. 
 
While the scope of the EFI Foundation study did not include a benefit/cost analysis, a 
complete analysis would document an array of both costs and benefits. Here, the 
suggestion is that the benefits or transition to decarbonized ethanol might be summarized as 
the avoided Social Cost of Carbon (SCC) or the Social Cost of Carbon Dioxide (SC-CO2). 

 
1 As summarized in, https://en.wikipedia.org/wiki/Bayesian_inference, this usually is a method of statistical inference used to update a 
working assessment or a prior analysis as more evidence, or as more supplemental information becomes available. For a more complete 
background of this idea, see also, McGrayne, Sharon Bertsch. The Theory That Would Not Die: How Bayes’ Rule Cracked the Enigma 
Code, Hunted Down Russian Submarines and Emerged Triumphant From Two Centuries of Controversy. New Haven, CT: Yale University 
Press, 2012. https://yalebooks.yale.edu/9780300188226/the-theory-that-would-not-die.  

https://en.wikipedia.org/wiki/Bayesian_inference
https://yalebooks.yale.edu/9780300188226/the-theory-that-would-not-die
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This is an estimate, in dollars, of the many economic damages that would result from 
emitting one additional ton of carbon dioxide into the atmosphere. In effect, the SC-CO2 
translates the effects of climate change into economic terms. This reflects climate impacts 
such as temperature increase and sea level rise, as those changes impact agriculture, 
health, energy use, and other aspects of the economy. Rennert et al. (2022) show that 
improved socioeconomic projections, together with both updated climate models and climate 
damage functions, reveal a preferred mean SC-CO2 estimate that is on the order of 
$185 per ton of CO2 ($44–$413 per ton of CO2: 5%–95% range, 2020 US dollars).i In other 
words, at an economic cost of $185 per ton, the investment in decarbonization techniques, 
which end up costing less than $185, can actually benefit both the market and the economy. 
This is significantly higher than an earlier US government value of $51 per tCO2. At $185 per 
ton of CO2 avoided, the benefit is significantly higher than the range of aggregate costs 
associated with the many different techniques or technology pathways that might reduce 
carbon dioxide emissions from the use of ethanol fuels. 
 
Ricke et al. (2018), at the Scripps Institution of Oceanography, whose team estimated that 
expected economic damages from CO2 emissions will range from $177 to $805 per metric 
ton of CO2, with a median value of $417. The social cost of carbon (SCC) at $417/metric ton 
adds $3.71 to the cost per gallon from the health, climate, and other economic damages of 
the CO2 emitted by burning a gallon of gasoline.ii However, it should be noted that the Ricke 
et al. (2018) values are based on constant 2005 dollars. Adjusting for the inflation rate 
between 2005 and 2020 would increase the social cost of carbon to ~$563 per ton of CO2, 
or $5.00 per gallon of gasoline-equivalent in 2020 dollars. 
 
EPA (2023) provides an updated range of estimates of the Social Cost of Greenhouse 
Gases more broadly, or SC-GHG, also including Methane (SC-CH4) and Nitrous Oxide (SC-
N2O), as they might change over the years 2020-2080 (expressed in 2020 dollars).iii 
Depending on the year and the discount rate, the SC-CO2 cost ranges from $120 to $600 
per ton. One big question, of course, is how to turn those avoided costs (or benefits) into 
appropriate incentives that can further strengthen market alternatives favoring reduced 
carbon or carbon dioxide emissions. 
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III. Applying Bayesian Inference 
Techniques to Independently Assess the 
Cost Estimates for Ethanol 
Decarbonization 
The remaining sections of this paper summarize the results of several independent analyses 
of the reasonableness of the costs for ethanol decarbonization as presented in the EFI 
Foundation report. Section IIIA explores how “experience curves” confirm or point to a likely 
reduced future cost of ethanol decarbonization (at least to some extent), as otherwise 
reported in the main narrative of this report. Section IIIB then introduces the idea of a “Monte 
Carlo Simulation” to confirm the likely magnitude of costs associated with that scale of 
decarbonization. Section IIIIC section provides brief working conclusions and prospective 
next steps forward while the last section, Section IV, provides a list of references used in the 
assessment that follows. 

IIIA. Statistical Aspect One: The Experience Curve 
While the main analysis suggests a hard cost of technology pathways ranging from numbers 
like $35 to $140 per ton of carbon dioxide emissions reduction (expressed in constant 2024 
dollars), a combination of things like economies of scale, improved access to supply chains, 
and experience in building and putting critical technologies to work can lower the cost from, 
say, a high cost of $140 down to perhaps $35 or even less.2  
 
One way to explore the potential for future cost improvements is to evaluate the scale of 
future cost reductions using what might be called an “experience curve.” In other words, 
experience is gained as the volume of emission reduction technologies and their managed 
use or implementation increases over time. For example, Laitner and Sanstad (2004) 

 
2 Perhaps not immediately obvious to the reader but reducing the costs of decarbonization from a suggested range of $140, down to a 
much lower $35 per ton, means that yes, costs are coming down even as the social costs carbon (i.e., the growing climate burden) are 
likely to increase beyond $185 per ton in future years. Hence, there is a likely positive increase in any benefit-cost ratio which might 
complement the full set of findings within the main narrative. 
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characterized a series of 15 selected technologies and showed that the use of those 
technologies tended to reduce their cost at different rates as a function of their different 
levels of “experience” or the doubling in the individual use.iv As they documented, the 
“learning rates” of those different machines and devices ranged from a 4% reduction in cost 
for each in doubling the use of magnetic ballasts to 58% in doubling the use of integrated 
circuits. They noted, however, that the majority of technologies—whether electronic ballasts, 
the Ford Model T, or substitutes for chlorofluorocarbons (CFCs) —had learning rates that 
tended to range from a 15% to a 25% cost reduction for each doubling. In other words, each 
doubling of use was the “experience” with a given technology, and the associated reduction 
in cost was the “learning rate.” 
 
The basic formula for estimating the “learning rate,” or LR, is a function of Cost at time t, or 
Ct, compared to the initial Cost in the first year, or C0, but also as a function of the number of 
doublings, Dbl, in the use of a given technology, as shown in the equation below: 

𝐿𝐿𝐿𝐿 =  1 − �
𝐶𝐶𝑡𝑡
𝐶𝐶0
�
� 1
𝐷𝐷𝐷𝐷𝐷𝐷�

 

 
To show how this idea works and to explore a more recent example of cost reductions, an 
analysis documented here taps into both the Lazard (2024) cost trends for utility-scale solar 
photovoltaics (PV) and the scale of production as documented by the U.S. Energy 
Information Administration.v vi As Lazard suggests, for example, the cost of solar 
photovoltaic systems has dropped, in constant dollar values, from 36 cents per kilowatt-hour 
(kWh) in 2009 down to just 6 cents/kWh in 2023 as the scale of production saw a 7.53 rate 
of doubling of utility-scale PV (again in kWh), again over those same years.3 Or: 

𝐿𝐿𝐿𝐿 =  1 − �
$0.06/𝑘𝑘𝑘𝑘ℎ𝑡𝑡
$0.36/𝑘𝑘𝑘𝑘ℎ0

�
� 1
7.53�

 

 
Thus, the learning rate, LR, is 0.212, given these assumptions. In other words, for each 
doubling of production, the cost has decreased by (1 – 0.212), 78.8% of its previous level. 

 
3 Without going into analytical detail here, with PV generation of 890,000 megawatt-hours, or MWh, in 2009 and a total output of 
164,202,000 MWh in 2023, the implied number of doublings, or Dbl, is 7.53.  
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And we can then show how the cost in 2023 might be reduced from the rate documented in 
2009 with the equation: 
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2023 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2009 ∗ (1 − 0.212)7.53 
Or 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 $0.36 𝑖𝑖𝑖𝑖 2009 ∗ (1 − 0.212)7.53 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 $0.06 𝑖𝑖𝑖𝑖 2023 
 
With this backdrop, we can then suggest how the “experience curves,” together with the 
several different “learning rates,” might impact future costs of ethanol decarbonization. 
Because there is no documented evidence of a fixed learning rate, nor can we be sure of 
the number of doublings in the next several decades that might be possible in the production 
and use of decarbonized ethanol, the table that follows highlights the range of possible cost 
reductions given learning rates of 12, 16, and 20% together with an array of 3, 6, 9, and 
even 15 doublings in the use of these new fuels.4 
 
Table 1. 

 
 
If the cost index in, say, 2027 (the initial year of production) is = 1.000, with a learning rate 
of 12%, together with decarbonized ethanol reaching a total of ~6 doublings by the year 
2050, then the future cost in year 2050 can be estimated by the formula:  
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2050 =  (1 − 0.12)6 = ~0.464 
 

 
4 While there is not documented evidence of the potential scale of experience curves as they might be expected to lower future costs of 
ethanol decarbonization, the author did pull together some working analytics to suggest a reasonable range four to six doublings (perhaps 
more, depending on policy initiatives) with learning rates which might also fall within 12 to 20 percent (again, as a function of the scale of 
policy and market initiatives). Hence, the results summarized here are likely to be consistent with likely positive market outcomes. 

12% 16% 20%
3 0.681 0.593 0.512
6 0.464 0.351 0.262
9 0.316 0.208 0.134

15 0.147 0.073 0.035N
um
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r o

f 
Do

ub
lin

gs

Exploring Cost Decreases as a Function of
Production Doublings (Year 0 = Intial Scale of Use)
Learning Rate
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or about 46.4% of the initial year or “Year 0” value. So, if the cost of carbon intensity 
reduction, as previously suggested, might be $140 per ton of carbon dioxide emissions in 
2027 (expressed in constant 2024 $), then a six-fold doubling by 2050 implies a potential 
lower cost of $140 * 0.464, or $64.96/ton in that year (again expressed in constant 2024 $). 
Following the logic of the table, if the learning rate were as high as 20%, but with still 6 
doublings, then the anticipated cost might be $140 * 0.262, or $36.68/ton in that year. 
 
From an early production of perhaps 0.8 billion gallons of decarbonized ethanol in 2027, 
rising to perhaps 3.9 billion gallons in 2050, that implies a total cumulative production of 47.1 
billion gallons by 2050 (assuming the share of decarbonized ethanol reaches 25% of total 
ethanol production by 2050), then we might anticipate about 5.87 doublings, or very close to 
the 6 doublings shown in Table 1.5 One immediate takeaway from the “Experience Curve” 
data explored to this point is that the range of cost estimates, especially their combined use 
within different pathways and their resulting aggregated average costs, both high and low, 
appear to fall within the range of reasonableness. Perhaps more critically, the experience 
curve data also underscores the likelihood of future cost decreases as a function of both 
doublings and learning curves. 

Some Further Perspectives We Might Explore 
 
While we can point to some initial estimates of the various scales and costs of 
decarbonizing strategies, the question, of course, is how they meld into a combined final 
market cost and how they will also trend over time. And among the major drivers or market 
influences that might impact both the gamut of production outcomes and the possible rates 
of learning? 

• Scale of the market potential. . . especially compared to alternative technologies. 

Is ethanol seen merely as a transition resource that can help pivot to a zero-

carbon energy economy? Or will it be seen as a small but significant resource in 

 
5 The production data of 0.8 billion gallons assumes a small scale of production of decarbonized ethanol in 2027 which rises to about 25 
percent of vehicle use of ethanol in 2050 and suggested in the main narrative, or 3.9 billion gallons. Summing that production over those 
same years yields a cumulative consumption of 47.1 billion gallons. The number of doublings is estimated as Ln(3.9 / 0.8) / Ln(2) = 5.87. If 
47.1 billion gallons in 2050 seems like a lot, in 2022 alone, Americans used about 135.7 billion gallons of gasoline in just that one year 
alone. Most of the finished motor gasoline sold for vehicles in the U.S. is about 10% fuel ethanol by volume. See: 
https://www.eia.gov/energyexplained/gasoline/use-of-gasoline.php  

https://www.eia.gov/energyexplained/gasoline/use-of-gasoline.php
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2050. For example, former MIT materials scientist Dr. Saul Giffith (and a 

colleague who used my work as part of his book Electrify) suggests that ethanol 

may not be needed at all.vii At the same time, the IEA’s Net-Zero 2050 report 

suggests that it might be an important but small-scale resource.viii It posits a 2050 

global energy demand for liquid bioenergy of 15 exajoules, or about 2.8% of total 

primary energy needs in that year. 

• Supply chain: the scale of development, possible competitions, and potential 

shortages, as they all might affect (limit or enhance) ethanol production. 

• Economies of scale and scope. The previously cited Lazard (2024) underscores 

the importance of scale in maintaining lower costs in a number of ways. 

• Ways of improving the rates of learning, whether by new innovations, accelerated 

research and development, workforce training, or improved supply chain 

management to improve those learning rates. As in the previous example, if the 

initial cost is $140, with a 12% learning rate and 6 doublings of production through 

2050, then = $140 * (1- 0.12)6 = $64.96 per ton. But again, if that learning rate can 

be boosted to 20% as data now suggests for utility-scale PV systems, then 

drawing on Table 1 coefficients suggests a potential future cost of $140 * 0.262 = 

$36.68/ton. 

• Similar to hydrogen production, will the quantity of decarbonized ethanol 

produced be potentially greater than end-use consumption technologies might be 

able to fully absorb? In short, how much can the economy actually consume 

compared to what might otherwise be produced? 

• Will the big producers affect or limit other emerging markets or technologies? 

• How might the parasitic aspects of the materials needed, as well as other energy 

and water requirements used in the construction and operation of the different 

technology pathways, impact the scale and production of decarbonized ethanol? 

• Given the various programs, policies, and workforce training initiatives that might 

enable a greater scale of production, what might that add to the overall cost? And 

how might all of that, in turn, affect production and consumption patterns? 

• Will non-energy benefits and the avoided social costs of carbon (SCC) positively 

impact the production and use? As noted, Rennert et al. (2022) found that every 
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additional ton of carbon dioxide emitted into the atmosphere costs society $185. 

As they note, this is far higher than the federal estimate of $51 per ton at that 

time. Does an avoided $185 of damage become a benefit that encourages 

investment in low-carbon ethanol? 

• From a related perspective, if we imagine climate change as an “economic 

damage function,” how will that impact markets and economic resilience? 

Researchers from the Potsdam Institute (Kotz et al. 2024) suggest that North 

American GDP may be eroded by about 11% by 2050.ix 6 Without getting into too 

much detail but building on the EIA’s Annual Energy Outlook 2023, this suggests 

an impact of ~$4.9 trillion (2024$) in 2050. Seen in that light, decarbonized 

ethanol might become an important part of the solution. 

• Will demand-side options such as greater fuel economy, shared mobility, and/or 

greater freight and transit options affect production? 

• Might we introduce the idea of “opportunity cost,” which suggests that if we go 

one pathway, we will get X set of benefits, but if we go a different pathway 

altogether, we’ll get perhaps more like 1.5X or 2.0X the benefits? And finally. . . 

• In the spirit of a favorite 1982 Stanford University journal article, this information 

and the set of questions posed are all highlighted as we are “modeling more for 

insights than absolute precision.”x 

IIIB. Statistical Aspect Two: A Monte Carlo 
Simulation 
With an understanding that different learning rates and scale of manufacturing can improve 
overall costs in the production of decarbonized ethanol, we can turn to Monte Carlo 
simulations to provide yet another array of prospective outcomes on the costs of those 
possible outcomes. Monte Carlo simulations belong to a class of computational algorithms 
that rely on repeated random sampling to estimate their outcomes. Such methods are often 
used when replicating physical and mathematical systems and when data are incomplete. 

 
6 While I have briefly reviewed this report, and I am in communication with the lead researcher of the Potsdam Institute, I need to do some 
further review and confirm the 11 percent figure for the U.S. economy. But it is on that scale for North America, and perhaps as much as 
19 percent damages for the Global economy. 
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Hence, Monte Carlo methods are especially useful for modeling phenomena with significant 
uncertainty in assumptions or inputs. This might include calculating different capital costs 
(Capex) or operating costs (Opex) together with the financial implications of different debt 
and equity shares necessary to underwrite the investment magnitudes. It also includes the 
returns on those investments, given the debt and equity shares. 
 
The most famous early use of this type of simulation was by Enrico Fermi, who, in 1930, 
used a random method to calculate the properties of the newly discovered neutron. Monte 
Carlo methods were central to the simulations required for the Manhattan Project, though 
they were severely limited by the computational tools available at the time. Therefore, only 
after electronic computers were first built (from 1945 on), Monte Carlo methods began to be 
studied in depth. 
 
Here we rely on Monte Carlo simulations using triangular distributions in which we assume a 
reasonable or most likely value of a given variable. As already noted, this might reflect the 
range of Capex and Opex needed to produce an assortment of decarbonization techniques 
and reduction in carbon intensities. To that extent, then, we rely on existing data reported in 
the main narrative to estimate a minimum and maximum likely set of values that might be 
taken as the largest (most costly) and smallest available data points (least costly). 
 
The Monte Carlo technique then generates a set of random numbers to more easily explore 
the interactions among the many different variables and their very large uncertainties. In this 
regard, we stress that most of the distributions utilized here were assumed, and thus, 
probabilistic results should be taken as approximate.7 Yet, as we shall find, the overall 
results fit intuitively within the expected pattern of other concrete savings estimates (within 
their contribution to the larger economy) and with other studies that have been undertaken 
with a more limited scope. 
 
While there is no single Monte Carlo method or pre-determined set of algorithms that 
might be applied in any given context or market scenario, the table that follows highlights the 
assumptions used here. 

 
7 A working perspective of the Monte Carlo technique can be found in an investment writeup by Will Kenton (updated June 27, 2024), at 
https://www.investopedia.com/terms/m/montecarlosimulation.asp.  

https://www.investopedia.com/terms/m/montecarlosimulation.asp
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Table 2. 

 
 
The rows of Table 2 refer to the specific variables used within the simulations, including 
Capex as underpinned by different shares and returns of debt and equity, together with the 
expectation of investment returns associated with a given mix of investment patterns. A 
critical row shows Capex as amortized into “Levelized Capital Cost” or costs, to which we 
then add Opex, which generates a bottom row estimate of "Annual Cost per Ton." The 
"Source" column references how each row uses random variables ("Rnd"), a calculation 
based on prior random variables ("Calc"), and the assumed hard value, which provides the 
estimated life of any given assumed technology ("Firm").  
 
Also in Table 2, a fixed range of "Low", "Mid", and "High" estimates are reported for the 
different variables. But then "MC - Low" (not “marginal cost” but Monte Carlo - Low) 
generates a random value from an assumed "Low" and "Mid." As then expected, the "MC - 
High" (or Monte Carlo - High) generates a random value from an assumed "Mid" to "High" 
end. This enables an asymmetric array of variables, which, as now listed, tends more to the 
higher-end cost range. With the full mix of MC – Low, together with the MC - High, a final 
randomly assigned value of "MC Result." All of this generates a final random value of "Total 
Annual Cost /Ton" which becomes one of a thousand random final costs per ton. This is 
reported here as the bold green text in the bottom right corner of Table 2.  
 
As shown in the first row, with an assumption of capital costs (Capex) that might range from 
a $100 savings (shown as -$100) to perhaps a high of $120 per ton, a random amount might 

Key Variables Source Low Mid High MC - Low MC - High MC Result
Total Capital Costs ($/Tonne Equiv) Rnd -$100 $80 $120 -$64 $94 -$36
Debt Share (Percent) Rnd 20% 35% 60% 21% 48% 34%
Debt Cost (Percent Return) Rnd 3% 5% 7% 4% 6% 5%
Equity Share (Percent Capital) Calc 80% 65% 40% 79% 52% 66%
Equity Gains (Percent Return) Rnd 7% 11% 15% 11% 15% 13%
Weightd Average Return (Percent) Calc 6.20% 8.90% 10.20% 9.53% 10.68% 10.28%
Estimated Technology Life (Years) Firm 20 20 20 20 20 20
Uniform Capital Recovery Rate Calc 8.9% 10.9% 11.9% 11.37% 12.30% 11.97%
Levelized Capital Cost ($/Tonne ) Calc -$8.86 $8.70 $14.29 -$7.28 $11.56 -$4.31
Total Opex ($/Tonne) Rnd $24 $30 $53 $24 $44 $32
Total Annual Cost ($/Tonne) Calc $15.14 $38.70 $67.29 $16.72 $55.56 $27.69

Range of Monte Carlo Variables and Metrics ($/Tonne CO2 Reduced)
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result in a cost of -$36 per ton (last column in the first data row). Then, given the range of 
other uncertainties – including the shares and the returns on both debt and equity, together 
with an operating cost (Opex) of $32 per ton, the weighted costs might be $27.69/ton 
equivalent for at least one iteration or run of the model (again the bold green text of the 
bottom right corner). 
 
Given this array of assumptions and random variables, the simulation is run 1,000 times to 
accommodate the full array of different outcomes and then aggregates a far-ranging 
average of the many different but likely outcomes. Table 3 shows a final set of results based 
on those 1,000 iterations. 
 
Table 3.  

 
 
In short, with the wide range of potential Capex and Opex costs, together with an 
assortment of possible returns on investment, as shown in the table above, the simulation 
suggests an array of total costs that span a low of $16.63 to a high of $ 62.58, with an 
average cost of $39.13 per ton. At the same time, it appears that ~95% of the iterations 
might fall within $23.67 to $54.59 per ton. This appears to confirm, well within an order of 
magnitude, the cost estimates reported in the main narrative of this analysis.8 
 
Given all this, we then generate a "Histogram of Cost Ranges" based on 1,000 iterations, as 
summarized in Figure 1. 
 

 
8 As a further confirmation of findings, to choose another independent study of scale and cost of ethanol decarbonization, see Dees, John, 
Kafayat Oke, Hannah Goldstein, Sean T. McCoy, Daniel L. Sanchez, A. J. Simon, and Wenqin Li. “Cost and Life Cycle Emissions of 
Ethanol Produced with an Oxyfuel Boiler and Carbon Capture and Storage.” Environmental Science & Technology 57, no. 13 (April 4, 
2023): 5391–5403. https://doi.org/10.1021/acs.est.2c04784, which suggests decarbonization on the scale of $52 to $84 per ton CO2e for 
just one pathway, the “Ethanol Produced with an Oxyfuel Boiler and Carbon Capture and Storage.” 

Metric Cost $/tCO2

Minimum Cost 16.63
Maximum Cost 62.58
A Very Average Cost 39.13
Standard Deviation 7.89
95% Confidence Interval - Low 23.67
95% Confidence Interval - High 54.59

Monte Carlo Results (1,000 Iterations)

https://doi.org/10.1021/acs.est.2c04784


 

A Narrative on Learning and Monte Carlo Simulation to Confirm the Likelihood of a Cost-Effective Transition to  
Decarbonized Ethanol Resources 12 

Figure 1.  

 
 
The results in Figure 1 show that, although there may be very high or very low average 
annual costs, despite the array of uncertainties in costs and financial underpinning the end 
result, suggests that the frequencies of costs tend to confirm a strong likelihood in the range 
of $30 to $49 per ton. While Figure 1 provides an average of aggregate technology pathway 
costs, these averages appear consistent with the findings highlighted in the main report. 

IIIC. Some Concluding Thoughts and Possible Next 
Steps Forward 
In the spirit of what we referred to as Bayesian inference, the application of both Experience 
Curves and Monte Carlo simulations appears to confirm the assessment of “A Strategic 
Roadmap for Decarbonizing the U.S. Ethanol Industry” – with a very real possibility of 
actually seeing lower costs per ton than might be shown as a function of the different 
pathways previously described. But in this section, we explore the likelihood of similar or 
improved, perhaps an even better set of outcomes than posed by the main narrative and 
analysis. While Bayesian inference is seen as an important technique in statistics, the 
updating can provide an important aspect in the analysis of the ethanol story. At the same 
time, there are circumstances and market conditions that may impact the key findings of the 
main narrative. As perhaps a next step forward, we may want to explore not only the costs 
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but also the benefits as mentioned in Section II. Finally, as discussed in Section III, there is 
evidence to suggest there are many different market conditions and outcomes that may 
affect the results shown here. Hence, there is a need for possible forward-looking policies, 
programs, and incentives that can more likely ensure a more positive economic outcome 
that underpins both the production and use of decarbonized ethanol. 
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